Neuroscience
-
Fatigue in people with Multiple Sclerosis (PwMS) is a poorly understood, complex, and disabling symptom. We hypothesized that the perception of fatigue in PwMS results from increased information processing in cortical areas responsible for the perception of bodily states and decreased information processing in the cortico-basal ganglia network involved in the perception of motor performance. We investigated whether PwMS who perceive excessive fatigue would have increased resting-state functional connectivity (rsFC) between interoceptive brain areas (amygdala, anterior cingulate cortex [ACC], and insula) and decreased rsFC between cortico-basal ganglia premotor network compared to PwMS not reporting fatigue. ⋯ The Modified Fatigue Impact Scale scores were correlated with the increased rsFC between interoceptive brain areas (amygdala and insula) and decreased rsFC between cortico-basal ganglia (P < 0.01). MS-related perceived fatigue has a central cause, and it may be due to increased interoceptive brain activity (perception of bodily states). Interventions are needed to decrease fatigue and reorganize the brain circuitry.
-
The first of our aims in this study was to investigate the effects of 5-HT2AR, 5-HT7R, and A2AR blockades on miR-27b-3p expression in the short and long-term in neuroblastoma cells. Our second aim was to reduce the expression of pERK and suppress proliferation by blocking the 5-HT2AR with ketanserin. Our third aim was to reduce the expression of pAKT and induce apoptosis by blocking the A2AR and 5-HT7R with MSX3 and SB269970. ⋯ These findings showed that pAKT protein expression induced apoptosis due to decreased in neuroblastoma cells. Our study provides the first evidence for the relationships between ketanserin/miR-27b-3p/pERK, MSX3/miR-27b-3p/pAKT, and SB269970/miR-27b-3p/pAKT in neuroblastoma cells. Ketanserin, MSX3, and SB269970 drug combinations may be promising therapeutic agents in neuroblastoma cells.
-
Targeted intracranial delivery of molecularly-specific therapies within intricate brain structures poses a formidable challenge due to the heterogeneity of neuronal phenotypes and functions. Here we report the use of an implantable, miniaturized neural drug delivery system permitting dynamic adjustment of pharmacotherapies. ⋯ Remarkably, we demonstrate that micro infusions of U-50488 into the dorsal NASh induces reward-like conditioned place preferences, whereas a mere 1 mm shift ventrally results in conditioned place aversions. The striking precision afforded by this method may prove useful in other neurotherapeutic interventions.
-
A growing number of studies show that the diabetes drug Semaglutide is neuroprotective in Alzheimer's disease (AD) animal models, but its mode of action is not fully understood. In order to explore the mechanism of Semaglutide, 7-month-old APP/PS1/tau transgenic (3xTg) mice and wild-type (WT) mice were randomly divided into four groups: control group (WT + PBS), AD model group (3xTg + PBS), Semaglutide control group (WT + Semaglutide) and Semaglutide treatment group (3xTg + Semaglutide). ⋯ Semaglutide can inhibit the apoptosis of BV2 cells induced by Aβ1-42 in a dose-dependent manner and promote the transformation of microglia from M1 to M2, thereby exerting anti-inflammatory and neuroprotective effects. Therefore, we speculate that Semaglutide shows an anti-inflammatory effect by promoting the transformation of microglia from M1 to M2 type in the brain of 3xTg mice, and thus exerts a neuroprotective effect.
-
Review Meta Analysis
The tryptophan catabolite or kynurenine pathway in Long COVID disease: A systematic review and meta-analysis.
Recent studies confirm the involvement of activated immune-inflammatory responses and increased oxidative and nitrosative stress in Long COVID (LC) disease. However, the influence of these pathways on the metabolism of tryptophan (TRP) through the TRP catabolite (TRYCAT) pathway and their mediating effects on LC pathophysiology, has not been fully explored. ⋯ The current findings suggest that an activated TRYCAT pathway, characterized by decreased TRP levels and maybe elevated KYN levels, plays a significant role in the pathophysiology of LC.