Neuroscience
-
Review
Nanostructured photonics Probes: A transformative approach in neurotherapeutics and brain circuitry.
Neuroprobes that use nanostructured photonic interfaces are capable of multimodal sensing, stimulation, and imaging with unprecedented spatio-temporal resolution. In addition to electrical recording, optogenetic modulation, high-resolution optical imaging, and molecular sensing, these advanced probes combine nanophotonic waveguides, optical transducers, nanostructured electrodes, and biochemical sensors. ⋯ In this review, we summarize and discuss the role of photonics in neural probes, trends in electrode diameter for neural interface technologies, nanophotonic technologies using nanostructured materials, advances in nanofabrication photonics interface engineering, and challenges and opportunities. Finally, interdisciplinary efforts are required to unlock the transformative potential of next-generation neuroscience therapies.
-
We aimed to investigate the relationship between the volume reduction in hippocampal (HP) subregions and cognitive impairment in patients with cerebral small vessel disease (CSVD). Clinical, cognitive, and magnetic resonance imaging data were obtained for 315 participants. The CSVD group included 146 participants with a total CSVD score of 1-4. 169 participants with a total CSVD score of zero were used as control group (CSVD-0). ⋯ Regression analysis showed that fimbria was the most impacted HP subregion by CSVD. And mediation analysis revealed fimbria volume was a mediator variable between total CSVD score and MoCA/SCWT score. These results suggest that the volumes of HP subregions, especially the fimbria, may be effective potential biomarkers for early detecting cognitive impairment in CSVD.
-
Stem-cell derived extracellular vesicles (EVs) have shown promise in preclinical spinal cord injury (SCI) models but lack a comprehensive literature review for clinical translation guidance. ⋯ Both natural and bio-engineered EVs improve functional and pathological outcomes in animal models of SCI. The enhanced benefits observed with bio-engineered EVs, particularly those utilizing surface modification approaches, highlight the importance of continued exploration into bio-engineering techniques to optimize EVs' therapeutic efficacy for SCI repair. Protocol Registration CRD42024512122.
-
A stroke, also known as cerebrovascular accident, is a medical emergency that occurs when the blood supply to the brain is interrupted. This disruption can happen in two main ways: through a hemorrhagic stroke, where a blood vessel in the brain bursts, or through an ischemic stroke, where a blood clot blocks an artery. Both types of stroke cause damage to brain cells, leading to a range of health complications. ⋯ Ongoing clinical trials in stroke management are also highlighted. Timely diagnosis and prompt intervention are critical for improving patient outcomes. We aim to increase awareness and understanding of stroke among researchers and healthcare professionals, ultimately improving patient care.
-
Mecamylamine, a noncompetitive blocker of nicotinic acetylcholine receptors (nAChRs), is the racemic mixture of two stereoisomers: S-(+)-mecamylamine (S-mec) and R-(-)-mecamylamine (R-mec), with distinct interactions with α4β2 nAChRs. It has been shown that mecamylamine increases glutamate release and excites serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN). In this study, we separately evaluated the effects of S-mec and R-mec on 5-HT neuron excitability. ⋯ Moreover, combining S-mec with TC-2559, a selective agonist of HS α4β2 nAChRs, increased firing frequency by 65 %, exceeding the effect of S-mec alone. To validate these findings, we evaluated the antidepressant effects of S-mec (1 mg/kg) combined with TC-2559 or RJR-2403, another α4β2 nAChR agonist. This combination successfully reduced depression-like behaviors, suggesting a potential treatment strategy for patients resistant to conventional antidepressants.