Biomaterials
-
Realizing the potential of human pluripotent stem cell (hPSC)-based therapy requires the development of defined scalable culture systems with efficient expansion, differentiation and isolation protocols. We report an engineered 3D microfiber system that efficiently supports long-term hPSCs self-renewal under chemically defined conditions. ⋯ Four hPSC lines propagated in the microfibrous scaffold for 10 consecutive passages were capable of maintaining an undifferentiated phenotype as demonstrated by the expression of stem cell markers and stable karyotype in vitro and the ability to form derivatives of the three germ layers both in vitro and in vivo. Our 3D microfibrous system has the potential for large-scale cultivation of transplantable hESCs and derivatives for clinical applications.
-
The use of bioengineered nerve guides as alternatives for autologous nerve transplantation (ANT) is a promising strategy for the repair of peripheral nerve defects. In the present investigation, we present a collagen-based micro-structured nerve guide (Perimaix) for the repair of 2 cm rat sciatic nerve defects. Perimaix is an open-porous biodegradable nerve guide containing continuous, longitudinally orientated channels for orientated nerve growth. ⋯ The GFP-positive SC were aligned in a columnar fashion within the longitudinally orientated micro-channels. This cellular arrangement was not only observed prior to implantation, but also at one week and 6 weeks after implantation. It may be concluded that Perimaix nerve guides hold great promise for the repair of peripheral nerve defects.
-
The regenerative treatment of large osseous defects remains a formidable challenge in orthopedic surgery today. In the present study, we have synthesized biodegradable calcium/magnesium-doped silica-based scaffolds with hierarchically macro/mesoporous structure (CMMS), and incorporated recombinant human bone morphogenetic protein-2 (rhBMP-2) into the scaffolds to obtain a hybrid system for osteogenic factor delivery in the functional repair of bone defects. The developed CMMS/rhBMP-2 scaffolds presented interconnected porous network, macropores (200-500 μm) and mesopores (5.7 nm), as well as good bioactivity and biocompatibility and proper degradation rate. ⋯ We further assessed the in vivo effects of CMMS/rhBMP-2 scaffolds in a rabbit femur cavity defect model by using synchrotron radiation-based μCT (SRμCT) imaging and histological analysis, indicating that the CMMS/rhBMP-2 scaffolds resulted in more bone regeneration compared to that observed with the CMMS scaffolds without rhBMP-2. Moreover, scaffolds with or without rhBMP-2 underwent gradual resorption and replacement with bone and almost disappeared at 12 weeks, while the dense CMMS/rhBMP-2 material showed slower degradation rate and promoted the least extensive neo-bone formation. This study suggested that the hybrid CMMS/rhBMP-2 scaffolds system demonstrates promise for bone regeneration in clinical case of large bone defects.
-
A minimum in the biological response to materials that is observed to occur within a narrow surface energy range is related to the properties of water at these biology-contacting surfaces. Wetting energetics are calculated using a published theory from which it is further estimated that water molecules bind to these special surfaces through a single hydrogen bond, leaving three other hydrogen bonds to interact with proximal water molecules. ⋯ A minimum in the biological response occurs because water vicinal (near) to the Goldilocks Surface is not chemically different than bulk water. A more precise definition of the relative terms hydrophobic and hydrophilic for use in biomaterials becomes evident from calculations: >1.3 kJ/mole-of-surface-sites is expended in wetting a hydrophilic surface whereas <1.3 kJ/mole-of-surface-sites is expended in wetting hydrophobic surfaces; hydrophilic surfaces wet with >1 hydrogen bond per water molecule whereas hydrophobic surfaces wet with <1 hydrogen bond per water molecule.
-
Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation.
The function and longevity of implantable microelectrodes for chronic neural stimulation depends heavily on the electrode materials, which need to present high charge injection capability and high stability. While conducting polymers have been coated on neural microelectrodes and shown promising properties for chronic stimulation, their practical applications have been limited due to unsatisfying stability. Here, poly(3,4-ethylenedioxythiophene) (PEDOT) doped with pure carbon nanotubes (CNTs) was electrochemically deposited on Pt microelectrodes to evaluate its properties for chronic stimulation. ⋯ The charge injection limit of the Pt microelectrode was significantly increased to 2.5 mC/cm(2) with the PEDOT/CNT coating. Further in vitro experiments also showed that the PEDOT/CNT coatings are non-toxic and support the growth of neurons. It is expected that this highly stable PEDOT/CNT composite may serve as excellent new material for neural electrodes.