Magnetic resonance imaging
-
To evaluate the use of the intravoxel incoherent motion (IVIM) technique in half-Fourier single-shot turbo spin-echo (HASTE) diffusion-weighted imaging (DWI), and to compare its accuracy to that of apparent diffusion coefficient (ADC) to predict malignancy in head and neck tumors. ⋯ The IVIM technique may be applied in HASTE DWI as a diagnostic tool to predict malignancy in head and neck masses. The use of D and D* in combination increases the diagnostic accuracy in comparison with ADC.
-
Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. ⋯ A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies.
-
To assess the feasibility of full diffusional kurtosis tensor imaging (DKI) in prostate MRI in clinical routine. Histopathological correlation was achieved by targeted biopsy. ⋯ Full DKI is feasible to utilize in a routine clinical setting. Although there is some overlap some DKI parameters can significantly distinguish prostate cancer from the central gland or the normal peripheral zone. Nevertheless, the additional value of DKI compared with conventional monoexponential ADC calculation remains questionable and requires further research.
-
Quantification of the living human visual system using MRI methods has been challenging, but several applications demand a reliable and time-efficient data acquisition protocol. In this study, we demonstrate the utility of high-spatial-resolution diffusion tensor fiber tractography (DTT) in reconstructing and quantifying the human visual pathways. ⋯ We acquired diffusion tensor imaging (DTI) data with 1-mm slice thickness on a 3.0-Tesla clinical MRI scanner and analyzed the data using DTT with the fiber assignment by continuous tractography (FACT) algorithm. By utilizing the high-spatial-resolution DTI protocol with FACT algorithm, we were able to reconstruct and quantify bilateral optic pathways including the optic chiasm, optic tract, optic radiations free of contamination from neighboring white matter tracts.