Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
As human life expectancy increases, there is an increased prevalence of neurodegenerative disorders and dementia. There are many ongoing research trials for early diagnosis and management of dementia, and neuroimaging is a critical part of such studies. However, conventional neuroimaging often fails to provide enough diagnostic findings in patients with neurodegenerative disorders. ⋯ Also, SWI is a useful sequence to detect the low signal intensity of precentral cortices in patients with amyotrophic lateral sclerosis. Being familiar with SWI findings in neurodegenerative disorders is critical for an accurate diagnosis. In this paper, the authors review the technical parameters of SWI, physiologic, and pathologic iron deposition in the brain, and the role of SWI in the evaluation of neurodegenerative disorders in daily practice.
-
Corpus callosum atrophy is a sensitive biomarker of multiple sclerosis (MS) neurodegeneration but typically requires manual 2D or volumetric 3D-based segmentations. We developed a supervised machine learning algorithm, DeepnCCA, for corpus callosum segmentation and relate callosal morphology to clinical disability using conventional MRI scans collected in clinical routine. ⋯ DeepnCCA (https://github.com/plattenmichael/DeepnCCA/) is an openly available tool that can provide fast and accurate corpus callosum measurements applicable to large MS cohorts, potentially suitable for monitoring disease progression and therapy response.
-
Observational Study
Safety of MRI in the localization of implanted intracranial electrodes for refractory epilepsy.
This is an observational study to evaluate the safety of magnetic resonance imaging (MRI) to localize subdural grids and depth electrodes in patients with refractory epilepsy using a 1.5 Tesla MR scanner. ⋯ In our experience, a low SAR MRI protocol can be used to safely localize intracranial subdural grids and depth electrode in patients with refractory epilepsy.
-
Fatigue is the common symptom in patients with multiple sclerosis (MS), yet its pathophysiological mechanism is poorly understood. We investigated the metabolic changes in fatigue in a group of relapsing-remitting MS (RRMS) patients using MR two-dimensional localized correlated spectroscopy (2D L-COSY). ⋯ Our results suggest that fatigue in MS is strongly correlated with an imbalance in neurometabolites but not structural brain measurements.
-
Patients with pulmonary arterial hypertension (PAH) frequently present with anxiety, depression, autonomic, and cognitive deterioration, which may indicate brain changes in regions that control these functions. However, the precise regional brain-injury in sites that regulate cognitive, autonomic, and mood functions in PAH remains unclear. We examined the shifts in regional gray matter (GM) volume, using high-resolution T1-weighted images, and brain tissue alterations, using T2-relaxometry procedures, in PAH compared to healthy subjects. ⋯ PAH patients showed significant GM injury and brain tissue changes in sites that regulate cognition, autonomic, and mood functions. These findings indicate a brain structural basis for functional deficits in PAH patients.