Journal of neuroimaging : official journal of the American Society of Neuroimaging
-
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is occasionally associated with manifold diseases of the central nervous system (CNS). We sought to present the neuroimaging features of such CNS involvement. In addition, we sought to identify typical neuroimaging patterns that could indicate possible COVID-19-associated neurological manifestations. ⋯ Manifold CNS involvement is increasingly reported in COVID-19 patients. Typical and atypical neuroimaging features have been observed in some disease entities, so that familiarity with these imaging patterns appears reasonable and may assist clinicians in the differential diagnosis of COVID-19 CNS manifestations.
-
Imaging transcriptomics investigates the relationship between neuroanatomical/neuroimaging features and gene expression. The spatial and temporal distribution of the expressed genes and their pattern of spreading over time can contribute to elucidating cellular and molecular processes involved in neurodegeneration. In this study, we review recent findings regarding the correlation between neuroimaging and expression data in neurodegenerative diseases with a focus on Alzheimer's disease and Parkinson's disease. ⋯ In addition, expression enrichment of genes involved in immunological processes in vulnerable regions-such as the Toll-like receptor, a receptor involved in innate immunity-plays a major role in neuroinflammation in neurodegenerative diseases. However, substantial limitations must be overcome in future studies: the lack of high-quality resolution expression data, the lack of standardized study protocols, and insufficient sensitive early stage neuroimaging markers of degeneration. Identifying neuroimaging and expression prodromal biomarkers and investigating their causal relation in the preclinical disease stage may enable early targeted therapy before the onset of irreversible brain changes.
-
Paroxysmal kinesigenic dyskinesia (PKD) is a rare movement disorder of the nervous system, and little is known about its pathogenesis. Currently, the diagnosis of PKD is primarily based on clinical manifestations, with little objective evidence. Neuroimaging has been used to explore the pathological changes in cerebral structure and function associated with PKD. ⋯ These results suggest that the neural mechanisms of PKD are associated with the disruption of both structural and/or functional properties in basal ganglia-thalamo-cortical circuitry and interhemispheric functional connectivity. PKD can be considered a circuitry/network disorder and is not restricted to localized structural and/or functional abnormalities. Multimodal neuroimaging combined with gene analysis can provide additional valuable information for a better understanding of the pathogenesis and early diagnosis of this disorder.
-
Review Meta Analysis
Prediction of Meningioma WHO Grade Using PET Findings: A Systematic Review and Meta-Analysis.
World Health Organization (WHO) grading of meningiomas reflects recurrence rate and prognosis. Positron emission tomography (PET) investigates metabolic activity, allowing for distinction between low- and high-grade tumors. As preoperative suspicion for malignant meningioma will influence surgical strategy in terms of timing, extent of resection, and risks taken to achieve a total resection, we systematically reviewed the literature on PET-imaging in meningiomas and relate these findings to histopathological analysis. ⋯ We found that SUV and T/N ratio in 18F-FDG PET may be useful to noninvasively differentiate benign from malignant meningiomas. T/N ratio seems to have a high specificity for the detection of high-grade meningiomas. Other PET tracers were studied too infrequently to draw definitive conclusions. Before treatment strategies can be adapted based on 18F-FDG PET, prospective studies in larger cohorts are warranted to validate the optimal T/N ratio cutoff point.
-
Review Meta Analysis
Prediction of Meningioma WHO Grade Using PET Findings: A Systematic Review and Meta-Analysis.
World Health Organization (WHO) grading of meningiomas reflects recurrence rate and prognosis. Positron emission tomography (PET) investigates metabolic activity, allowing for distinction between low- and high-grade tumors. As preoperative suspicion for malignant meningioma will influence surgical strategy in terms of timing, extent of resection, and risks taken to achieve a total resection, we systematically reviewed the literature on PET-imaging in meningiomas and relate these findings to histopathological analysis. ⋯ We found that SUV and T/N ratio in 18F-FDG PET may be useful to noninvasively differentiate benign from malignant meningiomas. T/N ratio seems to have a high specificity for the detection of high-grade meningiomas. Other PET tracers were studied too infrequently to draw definitive conclusions. Before treatment strategies can be adapted based on 18F-FDG PET, prospective studies in larger cohorts are warranted to validate the optimal T/N ratio cutoff point.