Neuroimaging clinics of North America
-
Neuroimaging Clin. N. Am. · Nov 2003
ReviewThe use of positron emission tomography in cerebrovascular disease.
Even with rapid development of other neuroimaging modalities such as MR imaging and CT, PET is the only technique that provides accurate, quantitative measurements of regional hemodynamics and metabolism in human subjects. Through the use of these combined measurements, we have greatly expanded our knowledge of the pathophysiology of cerebrovascular disease of different types. It has been possible to document the compensatory responses of the brain to reductions in perfusion pressure and to directly relate these responses to prognosis. ⋯ In the field of cerebrovascular disease, PET has served as a specialized research tool at a few centers to help elucidate the pathophysiology of stroke. Up until now, however, PET scans in individual patients have not been demonstrated to be necessary for making patient care decisions. Whether the role of PET expands to impact the management of individual patients will depend on the results of investigations like the Carotid Occlusion Surgery Study that directly assess the ability of PET to influence patient outcome.
-
Neuroimaging Clin. N. Am. · Nov 2003
ReviewPositron emission tomography in central nervous system drug discovery and development.
Genetics, neuroscience, and imaging science have advanced greatly in the last few years. These advances can be brought together and applied in creative new ways to make available better drugs for treating neuropsychiatric disorders and for getting candidate drugs through the development process faster. One particular approach, built around [18F]fluordeoxyglucose positron emission tomography, is described.
-
Neuroimaging Clin. N. Am. · Nov 2003
ReviewImaging the pathology of Alzheimer's disease: amyloid-imaging with positron emission tomography.
The steep rise in the incidence of Alzheimer's disease (AD) has further added to the considerable public health burden caused by aging of the United States population. Among the most characteristic pathologic hallmarks of AD are neuritic plaques and neurofibrillary tangles. The capability to use positron emission tomography and selective markers for amyloid protein deposition promises to substantially alter the way we diagnosis and manage patients who have AD.
-
Energy metabolism and amino acid transport and incorporation are important components of the pathophysiology of gliomas, about which molecular imaging is providing regional biologic information that is useful to clinical practice. Imaging hypoxia is straightforward and proliferation imaging with FLT shows significant promise. Neither has been exploited thoroughly enough to allow judgement of their potential benefit to the practice of neuro-oncology. ⋯ Annexin V binds to surface membranes that have exposed phosphatidyl serine residues resulting from programmed cell destruction. Recently, a Tc-99m-labeled derivative has been shown to accumulate in late stage lung cancer and lymphoma in response to chemotherapy [137]. As molecular pathways leading to and sustaining neoplasia become better understood, so will our capacity improve to measure them in vivo and intervene to the patient's advantage.
-
Neuroimaging Clin. N. Am. · Nov 2003
ReviewPositron emission tomography imaging in depression: a neural systems perspective.
PET measures of regional glucose metabolism, although chemically nonspecific, are sensitive indices of brain function in the untreated state and following disparate treatments. The continued development of imaging and multivariate statistical strategies is expected to provide an important perspective toward the full characterization of the depression phenotype at the neural systems level. An additional goal is the development of routine, brain-based clinical algorithms that optimize diagnosis and treatment of individual depressed patients.