Neuromodulation : journal of the International Neuromodulation Society
-
Dorsal root ganglion (DRG) stimulation has been established as a therapy in the treatment of chronic pain. Ideal electrode placement is guided by proper identification of the location of the DRG. The location of the S1 DRG is not well delineated and can be variable making ideal location of the electrode placement difficult based on fluoroscopic imaging. ⋯ This analysis of S1 DRG programming demonstrates that ideal positioning of the majority of the contacts for the electrode should be posterior and along the sacral border on fluoroscopic imaging. These findings also suggest that the S1 DRG may be located most reproducibly at the border of the intraforaminal and intracanalicular region.
-
Dorsal root ganglion (DRG) stimulation has been demonstrated to be effective in treating painful diabetic polyneuropathy in a small case series. However, diabetic polyneuropathy only accounts for 41% of all polyneuropathies and the efficacy of DRG on other types of polyneuropathy is unclear. The objective of this study is to evaluate the efficacy of DRG stimulation in treating painful hereditary and idiopathic axonal polyneuropathy. ⋯ This small retrospective study suggests that DRG stimulation may be a safe and effective treatment for painful hereditary and idiopathic axonal polyneuropathy.
-
Up until now there is little data about the pain relieving effect of different frequency settings in DRGS. The aim of this study was to compare the pain relieving effect of DRGS at low-, mid-, and high-frequencies and Sham-DRGS in an animal model of painful diabetic neuropathy (PDPN). ⋯ These results show that DRGS is equally effective when applied at low-, mid-, and high-frequency in an animal model of PDPN. However, low-frequency-(1 Hz)-DRGS resulted in a delayed wash-out effect, which suggests that this is the most optimal frequency for pain therapy in PDPN as compared to mid- and high-frequency.
-
Dorsal root ganglion stimulation (DRGS) has recently emerged as a neuromodulation modality in the treatment of chronic neuropathic pain. The objective of this study was to compare the efficacy of different Burst-DRGS amplitudes in an experimental model of painful diabetic peripheral neuropathy (PDPN). ⋯ Our findings indicate a nonlinear relationship between Burst-DRGS amplitude and behavioral outcome, with an estimated optimal amplitude of 52% MT. Further optimization and analysis of DRGS driven by insights into the underlying mechanisms related to the various stimulation paradigms is warranted.
-
Nociceptive signals from lumbar intervertebral discs ascend in the sympathetic chain via the L2 dorsal root ganglion (L2 DRG), a potential target for discogenic low back pain in neuromodulation. Positron Emission Tomography/Computed Tomography (PET-CT) measures functional changes in the brain metabolic activity, identified by the changes in the regional cerebral blood flow (rCBF) as determined by the changes of F-18 Fluoro-deoxyglucose (18 F FDG) tracer within brain tissues. ⋯ This is the first ever study reporting the changes in cerebral metabolic activity and multi-frame static brain 18 F FDG PET imaging after L2 DRG stimulation for discogenic low back pain. Predominantly an increased metabolic activity in nociceptive brain matrices are seen with an increased in F18 F FDG uptake following L2 DRG stimulation.