Neuromodulation : journal of the International Neuromodulation Society
-
Multicenter Study
A Prospective Study of Dorsal Root Ganglion Stimulation for Non-Operated Discogenic Low Back Pain.
Disruptions of lumbar intervertebral discs may lead to severe discogenic low back pain (LBP). Severe pain has a deleterious effect on physical function and quality of life. Spinal cord stimulation (SCS) is a robust treatment for many neuropathic pain conditions. New innovations may be well-suited to treat neuropathic chronic LBP, including discogenic pain. The aim of this prospective study was to determine the effect of dorsal root ganglion (DRG) stimulation for a well-selected group of patients with discogenic LBP with no history of previous back surgeries. ⋯ DRG stimulation treatment for discogenic LBP improved the level of pain, function, and quality of life. Further research is necessary into efficacy of DRG stimulation in patients with chronic discogenic LBP and to determine the place of SCS in the treatment algorithm.
-
Case Reports Pragmatic Clinical Trial
T12 Dorsal Root Ganglion Stimulation to Treat Chronic Low Back Pain: A Case Series.
Dorsal root ganglion stimulation (DRG-S) is a neuromodulation technique for treating neuropathic pain syndromes. Research has demonstrated DRG-S to be more effective than conventional SCS in treating RSD/CRPS, particularly of the lower extremities. Results from recent case series and prospective studies suggest that DRG-S may be effective in treatment of pain syndromes considered to have non-neuropathic components and characteristics (e.g. nociceptive). There have been multiple, small studies demonstrating efficacy of DRG-S for axial low back pain. There has, however, been no consensus regarding the best location for DRG lead placement in the treatment of low back pain. ⋯ T12 DRG-S can be an effective treatment for chronic axial low back pain. Stimulation results in reduced pain and disability, while improving quality of life. These outcomes can be achieved without paresthesias.
-
Stimulation of the dorsal root ganglion (DRG) in the treatment of chronic, intractable pain has shown excellent clinical results in multiple published studies, including a large prospective, randomized, controlled trial. Both safety and efficacy have been demonstrated utilizing this therapeutic approach for many chronic complaints. Continued assessment of neuromodulation therapies, such as DRG stimulation, are not only an important aspect of vigilant care, but are also necessary for the evaluation for safety. ⋯ The current results from a large consecutive cohort obtained from manufacturer records indicates that DRG stimulation demonstrates an excellent safety profile. Reported event rates are similar to previously reported adverse event and complaint rates in the literature for this therapy. Similarly, safety events rates were lower or similar to previously reported rates for SCS, further demonstrating the comparative safety of this neuromodulation technique for chronic pain treatment.
-
Dorsal root ganglion stimulation (DRGS) has recently emerged as a neuromodulation modality in the treatment of chronic neuropathic pain. The objective of this study was to compare the efficacy of different Burst-DRGS amplitudes in an experimental model of painful diabetic peripheral neuropathy (PDPN). ⋯ Our findings indicate a nonlinear relationship between Burst-DRGS amplitude and behavioral outcome, with an estimated optimal amplitude of 52% MT. Further optimization and analysis of DRGS driven by insights into the underlying mechanisms related to the various stimulation paradigms is warranted.
-
The role of the nucleus accumbens (NAc) in chronic neuropathic pain has been suggested, but the role of the NAc in dorsal root ganglion (DRG) neuropathic pain remains unclear. The objective of this study was to determine whether optogenetic stimulation of the NAc influences DRG compression-induced neuropathic pain. ⋯ The NAc core impacts the reward and motivational aspects of chronic neuropathic pain influenced by limbic behaviors to thalamic discharge. Increased thalamic firing activity may result in chronic compressed DRG-induced neuropathic pain, and optogenetic neuromodulation of the NAc can ease chronic pain and thalamic discharge.