Neuromodulation : journal of the International Neuromodulation Society
-
In deep brain stimulation (DBS) of the subthalamic nucleus for treatment of Parkinson's Disease, a commonly encountered stimulation side effect is involuntary muscle contractions from spread of electrical current to cortico-spinal and cortico-bulbar fibers in the internal capsule. During surgery, a variety of techniques, including microelectrode recording (MER), are used to avoid positioning the DBS electrode too close to the internal capsule. At some centers, MER includes stimulating through the microelectrode (microstimulation). ⋯ intraoperative microstimulation can help avoid positioning the DBS electrode too close to the internal capsule.
-
Effect of Eye Opening on Single-Unit Activity and Local Field Potentials in the Subthalamic Nucleus.
Subthalamic nucleus deep brain stimulation (STN DBS) is an established treatment in Parkinson's disease (PD). We investigate the effect of eye opening on neuronal activity and local field potentials (LFPs) in the STN. ⋯ STN activity is influenced by eye state and arm movement. It is unclear whether this is attributed to a change in the STN's role in oculomotor control or from a change in attentional state. Understanding how physiologic normal activity alters neural activity is critical for the optimization of DBS therapy, particularly in closed-loop neuromodulation.
-
Chronic neuropathic pain is estimated to affect 3-4.5% of the worldwide population, posing a serious burden to society. Deep Brain Stimulation (DBS) is already established for movement disorders and also used to treat some "off-label" conditions. However, DBS for the treatment of chronic, drug refractory, neuropathic pain, has shown variable outcomes with few studies performed in the last decade. Thus, this procedure has consensus approval in parts of Europe but not the USA. This study prospectively evaluated the efficacy at three years of DBS for neuropathic pain. ⋯ DBS demonstrated efficacy at three years for chronic neuropathic pain after traumatic amputation and brachial plexus injury, with benefits sustained across all pain outcomes measures and slightly greater improvement in phantom limb pain.
-
Deep brain stimulation (DBS) is a well-established treatment for the management of severe motor fluctuations in advanced Parkinson's disease (PD). Until recently, device regulation, medical, and insurance practices limited DBS to patients with advanced stages of PD. In February 2016 this changed, however, when the US Food and Drug Administration (FDA) granted formal approval for the use of brain stimulator in mid-stage PD patients. In this article, we examine whether DBS in mid-stage PD can be ethically justified beyond the FDA approval. ⋯ Although it might be too premature to know how the FDA decision will affect medical and insurance practices, we conclude by arguing that revisions to persisting guidelines seems justified both on scientific and ethical grounds.
-
Randomized Controlled Trial
Cyclization of Motor Cortex Stimulation for Neuropathic Pain: A Prospective, Randomized, Blinded Trial.
Programming guidelines for motor cortex stimulation (MCS) in neuropathic pain requires further investigation. After optimizing voltage as a percentage of motor threshold, we evaluated the effect of cyclizing time of stimulation on pain relief for chronic neuropathic pain. ⋯ In this small cohort, cyclization of MCS settings revealed two distinct subgroups: responders and nonresponders. Responders tolerated stimulation in all settings and 50% stimulation (15 min ON/15 min off) was their subjectively preferred setting. Cyclization in responders will prolong battery life and delay the need for INS replacement and may offer improved pain relief. Building from our previous work, we recommend clinicians consider following the Vancouver MCS programming algorithm presented in this manuscript.