Journal of clinical monitoring and computing
-
J Clin Monit Comput · Oct 2017
Identifying the position of the right atrium to align pressure transducer for CVP : Spirit level or 3D electromagnetic positioning?
The central venous pressure, CVP, is an important variable in the management of selected perioperative and intensive care cases and in clinical decision support systems, CDSS. In current routine, when measuring CVP the health care provider may use anatomical landmarks and a spirit level, SL, to adjust the pressure transducer to the level of the tricuspid valve, i.e. the phlebostatic axis. The aim of the study was to assess the agreement in the postoperative setting between the SL method and electromagnetic 3D positioning (EM). ⋯ The limits of agreement extended in excess of ±8 mmHg and half of the measurements had deviations outside an accepted error range of ±2.5 mmHg. There was a large variation in CVP measurements when assessing the agreement with the current method. This may indicate the need for improvement in accuracy, e.g. using the electromagnetic field positioning system, in association with routine monitoring and clinical decision support systems.
-
J Clin Monit Comput · Aug 2017
Comparative Study Observational StudyComparison of smartphone application-based vital sign monitors without external hardware versus those used in clinical practice: a prospective trial.
Use of healthcare-related smartphone applications is common. However, there is concern that inaccurate information from these applications may lead patients to make erroneous healthcare decisions. The objective of this study is to study smartphone applications purporting to measure vital sign data using only onboard technology compared with monitors used routinely in clinical practice. ⋯ The degree of correlation between monitors routinely used in clinical practice and the smartphone-based applications studied is insufficient to recommend clinical utilization. This lack of correlation suggests that the applications evaluated do not provide clinically meaningful data. The inaccurate data provided by these applications can potentially contribute to patient harm.
-
J Clin Monit Comput · Aug 2017
ReviewA systematic review of pulse pressure variation and stroke volume variation to predict fluid responsiveness during cardiac and thoracic surgery.
This systematic review aims to summarize the published data on the reliability of pulse pressure variation (PPV) and stroke volume variation (SVV) to predict fluid responsiveness in an open-chest setting during cardio-thoracic surgery. The analysis included studies reporting receiver operating characteristics or correlation coefficients between PPV/SVV and change in any hemodynamic variables after a fluid challenge test in open-chest conditions. The literature search included seven studies. ⋯ The great heterogeneity between studies was due to small sample size and differences among protocol designs (different monitor devices, mechanical ventilation settings, fluid challenge methodologies, surgical incisions, and end-point variables). PPV and SVV seem to be inaccurate in predicting fluid responsiveness in an open-chest setting during cardio-thoracic surgery. Given the high heterogeneity of published data, more studies are needed to define the role of PPV/SVV in this context.
-
J Clin Monit Comput · Aug 2017
The venous-arterial difference in CO2 should be interpreted with caution in case of respiratory alkalosis in healthy volunteers.
The venous-arterial difference in CO2 (ΔCO2) has been proposed as an index of the adequacy of tissue perfusion in shock states. We hypothesized that the variation in PaCO2 (hyper- or hypocapnia) could impact ΔCO2, partly through microcirculation adaptations. Fifteen healthy males volunteered to participate. ⋯ HCO2 induced a moderate increase of the resaturation slope of NIRS oxygenation. Skin microcirculatory blood flow significantly dropped with hCO2, while it remained unchanged with hypercapnia. Our results warrant cautious interpretation of ΔCO2 as an indicator of tissue perfusion during respiratory alkalosis.