Frontiers in pediatrics
-
The concept of univentricular heart moved from hearts with only one ventricle connected with atria [double inlet ventricle or absent atrioventricular (AV) connection] to hearts not amenable to biventricular repair, namely hearts with two ventricles unable to sustain separately pulmonary and systemic circulations in sequence. In the latter definition, even hearts with one hypoplastic ventricle are considered "functional" univentricular hearts. They include pulmonary/aortic atresia or severe stenosis with hypoplastic ventricle, and rare conditions like huge intramural cardiac tumors and Ebstein anomaly with extreme atrialization of right ventricular cavity. ⋯ Absent right or left AV connection may develop in the setting of both d- or l-loop, whatever the situs. In this condition, the contra-lateral patent AV valve may be either mitral or tricuspid in terms of morphology and the underlying ventricle (main chamber) either morphologically left or right. Establishing the loop, whatever right or left (also called right or left ventricular topology), is a fundamental step in the segmental-sequential analysis of congenital heart disease.
-
Frontiers in pediatrics · Jan 2014
ReviewFocal necrosis and disturbed myelination in the white matter of newborn infants: a tale of too much or too little oxygen.
White matter disease in preterm infants comes along with focal destructions or with diffuse myelination disturbance. Recent experimental work with transgenic mice paves the way for a unifying molecular model for both types of brain injury, placing oxygen sensing by oligodendrocyte precursor cells (OPCs) at the center stage. ⋯ These recent experimental findings on oxygen sensing and myelination are awaiting integration into a clinical framework. Gene regulation in response to hyperoxia or hypoxia, rather than oxidative stress, may be an important mechanism underlying neonatal white matter disease.
-
Frontiers in pediatrics · Jan 2014
ReviewTreatments for biomedical abnormalities associated with autism spectrum disorder.
Recent studies point to the effectiveness of novel treatments that address physiological abnormalities associated with autism spectrum disorder (ASD). This is significant because safe and effective treatments for ASD remain limited. These physiological abnormalities as well as studies addressing treatments of these abnormalities are reviewed in this article. ⋯ Overall, these treatments were generally well-tolerated without significant adverse effects for most children, although we review the reported adverse effects in detail. This review provides evidence for potentially safe and effective treatments for core and associated symptoms of ASD that target underlying known physiological abnormalities associated with ASD. Further research is needed to define subgroups of children with ASD in which these treatments may be most effective as well as confirm their efficacy in DBPC, large-scale multicenter studies.
-
Frontiers in pediatrics · Jan 2014
ReviewNeuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain.
Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. ⋯ The inflammatory cascade comprises activation and migration of microglia - the so-called "brain macrophages," infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds.
-
Frontiers in pediatrics · Jan 2014
ReviewExisting data analysis in pediatric critical care research.
Our objectives were to review and categorize the existing data sources that are important to pediatric critical care medicine (PCCM) investigators and the types of questions that have been or could be studied with each data source. We conducted a narrative review of the medical literature, categorized the data sources available to PCCM investigators, and created an online data source registry. We found that many data sources are available for research in PCCM. ⋯ Linkage of data sources can expand the types of questions that a data source can be used to study. Careful matching of the scientific question to the best available data source or linked data sources is necessary. In addition, rigorous application of the best available analysis techniques and reporting consistent with observational research standards will maximize the quality of research using existing data in PCCM.