Acta astronautica
-
Exposure to extraterrestrial dusts is an almost inevitable consequence of any proposed planetary exploration. Previous studies in humans showed reduced deposition in low-gravity compared with normal gravity (1G). However, the reduced sedimentation means that fewer particles deposit in the airways, increasing the number of particles transported to the lung periphery where they eventually deposit albeit at a smaller rate than in 1G. In this study, we determined the role that gravity and other mechanisms such as cardiogenic mixing play in peripheral lung deposition during breath holds. ⋯ The most important finding of this study is that, even in the absence of gravity, aerosol deposition in the lung periphery increased with increasing residence time. Because the particles used in this study were too large to be significantly affected by Brownian diffusion, the increase in deposition is likely due to cardiogenic motion effects.
-
The recent interest in the use of ultrasound (US) to detect pneumothoraces after acute trauma in North America was initially driven by an operational space medicine concern. Astronauts aboard the International Space Station (ISS) are at risk for pneumothoraces, and US is the only potential medical imaging available. Pneumothoraces are common following trauma, and are a preventable cause of death, as most are treatable with relatively simple interventions. ⋯ The sonographic examination was found to be more accurate and sensitive than CXR (US 96% and 100% versus US 74% and 36%) in specific circumstances. Initial studies have also suggested that detecting the US features of pleural pulmonary ventilation in the left lung field may offer the ability to exclude serious endotracheal tube malpositions such as right mainstem and esophageal intubations. Applied thoracic US is an example of a clinically useful space medicine spin-off that is improving health care on earth.
-
Spaceflight experiments involving biological specimens face unique challenges with regard to the on orbit harvest and preservation of material for later ground-based analyses. Preserving plant material for gene expression analyses requires that the tissue be prepared and stored in a manner that maintains the integrity of RNA. ⋯ Pairing RNAlater with the KFT system provides a safe and effective strategy for preserving plant material for subsequent molecular analyses, a strategy that has proven effective in several spaceflight experiments. Possible spaceflight scenarios for the use of RNAlater and KFTs are explored and discussed.
-
Critical issues in connection with human planetary missions: protection of and from the environment.
Activities associated with human missions to the Moon or to Mars will interact with the environment in two reciprocal ways: (i) the mission needs to be protected from the natural environmental elements that can be harmful to human health, the equipment or to their operations: (ii) the specific natural environment of the Moon or Mars should be protected so that it retains its value for scientific and other purposes. The following environmental elements need to be considered in order to protect humans and the equipment on the planetary surface: (i) cosmic ionizing radiation, (ii) solar particle events; (iii) solar ultraviolet radiation; (iv) reduced gravity; (v) thin atmosphere; (vi) extremes in temperatures and their fluctuations; (vii) surface dust; (viii) impacts by meteorites and micrometeorites. ⋯ Records of human activities on the planet's surface should be maintained in sufficient detail that future scientific experimenters can determine whether environmental modifications have resulted from explorations. Grant numbers: 14056/99/NL/PA.
-
After the Apollo Moon program, the international space station represents a further milestone of humankind in space, International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. ⋯ Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. $50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about $2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available.