Acta astronautica
-
In the past, space life sciences has focused on gaining an understanding of physiological tolerance to spaceflight, but, for the last 10 years, the focus has evolved to include issues relevant to extended duration missions. In the 21st century, NASA's long-term strategy for the exploration of the solar system will combine the assurance of human health and performance for long periods in space with investigations aimed at searching for traces of life on other planets and acquiring fundamental scientific knowledge of life processes. Implementation of this strategy will involve a variety of disciplines including radiation health, life support, human factors, space physiology and countermeasures, medical care, environmental health, and exobiology. It will use both ground-based and flight research opportunities such as those found in current on-going programs, on Spacelab and unmanned biosatellite flights, and during Space Station Freedom missions.
-
The microgravity environment of spaceflight produces rapid cardiovascular changes which are adaptive and appropriate in that setting, but are associated with significant deconditioning and orthostatic hypotension on return to Earth's gravity. The rapidity with which these space flight induced changes appear and disappear provides an ideal model for studying the underlying pathophysiological mechanisms of deconditioning and orthostatic hypotension, regardless of etiology. Since significant deconditioning is seen after flights of very short duration, muscle atrophy due to inactivity plays, at most, a small role. ⋯ The techniques and findings from many of the SLS-1 and 2 supporting studies have already yielded significant information about circulatory regulation in patients with both hypo- and hypertension. The flight experiments themselves will provide new data to test the validity of both animal and human models currently used for simulating the fluid shifts of a micro-gravity environment. The development of effective countermeasures, not only for short and long duration space travellers, but also for Earth-bound medical patients can then be physiologically based on experimental data rather than anecdote.