Annals of advances in automotive medicine / Annual Scientific Conference ... Association for the Advancement of Automotive Medicine. Association for the Advancement of Automotive Medicine. Scientific Conference
-
Ann Adv Automot Med · Oct 2009
Comparative StudyComparison of injury severity between AIS 2005 and AIS 1990 in a large injury database.
The aim of this study is to investigate the differences in car occupant injury severity recorded in AIS 2005 compared to AIS 1990 and to outline the likely effects on future data analysis findings. Occupant injury data in the UK Cooperative Crash Injury Study Database (CCIS) were coded for the period February 2006 to November 2007 using both AIS 1990 and AIS 2005. ⋯ When these injury trends were reviewed in more detail it was found that the body regions which contributed the most to these changes in severity were the head, thorax and extremities. This is one of the first studies to examine the implications for large databases when changing to an updated method for coding injuries.
-
Ann Adv Automot Med · Oct 2009
Comparative StudyDynamic biomechanics of the human head in lateral impacts.
The biomechanical responses of human head (translational head CG accelerations, rotational head accelerations, and HIC) under lateral impact to the parietal-temporal region were investigated in the current study. Free drop tests were conducted at impact velocities ranging from 2.44 to 7.70 m/s with a 40 durometer, a 90 durometer flat padding, and a 90 durometer cylinder. Specimens were isolated from PMHS subjects at the level of occipital condyles, and the intracranial substance was replaced with brain simulant (Sylgard 527). ⋯ At the skull fracture, HIC values were more than 2-3x higher than the frontal skull fracture threshold (HIC=1000), emphasizing the differences between frontal and lateral impact. Rotational head accelerations up to 42.1 krad/s(2) were observed before skull fracture, indicating possible severe brain injury without skull fracture in lateral head impact. These data will help to establish injury criteria and threshold in lateral impacts for improved automotive protection and help clinicians understand the biomechanics of lateral head impact from improved diagnosis.
-
Ann Adv Automot Med · Oct 2009
Comparative StudyA study of impairing injuries in real world crashes using the Injury Impairment Scale (IIS) and the predicted Functional Capacity Index (PFCI-AIS).
The ability to predict impairment outcomes in large databases using a simplified technique allows researchers to focus attention on preventing costly impairing injuries. The dilemma that exists for researchers is to determine which method is the most reliable and valid. This study examines available methods to predict impairment and explores the differences between the IIS and pFCI applied to real world crash injury data. ⋯ These data were selected from a previous study conducted between 2003 and 2006 and identified the discrepancy between predicted impairment and actual perceived impairment as defined by the participant. Overall the work highlights the variation between the pFCI and IIS and emphasises the importance and need for a single validated impairment scale that can be universally applied. This would allow emphasis to be directed towards preventing injuries that are associated with the most significant impairment outcomes.
-
Previous studies have demonstrated that booster seats reduce the risk of abdominal injuries by improving the fit of the seat belt on young children and encouraging better posture and compatibility with the vehicle seat. Recently, several studies have reported cases of abdominal injuries in booster seated children questioning the protective effects of these restraints. The objective of this study was to examine cases of abdominal injuries in booster seated children through parametric modeling to gain a thorough understanding of the injury causation scenarios. ⋯ Children in two of the cases sustained a thoracic injury (AIS 3/AIS 4) in addition to their abdominal injuries (AIS 2) and review of these cases pointed to the role of shoulder belt loading in the injury causation. Modeling of these cases revealed chest compressions and accelerations of 30-53 mm and 41-89 g, respectively and abdominal deflection and velocity of 7.0-13.3 mm and 1.2-2.2 m/s, respectively. Parametric study suggested that coupling shoulder belt load limiting and lap belt buckle pretensioning resulted in improved chest and abdominal metrics while reducing head excursion, indicating that these technologies may provide injury reduction potential to pediatric rear seat occupants.