Articles: trauma.
-
Brain injury causes dysfunction of the blood-brain barrier (BBB). The BBB is comprised of perivascular astrocytes whose end-feet ensheath brain microvascular endothelial cells. We investigated trauma-induced morphological changes of human astrocytes (HA) and human cerebral microvascular endothelial cells (hCMEC/D3) in vitro, including the potential role of mitogen-activated protein kinase (MAPK) signal-transduction pathways. ⋯ In summary, traumatic injury induces JNK-mediated HA retraction in vitro, while sparing morphological changes in cerebral microvascular endothelial cells. Astrocyte retraction from microvascular endothelial cells in vivo may occur after brain trauma, resulting in cellular uncoupling and BBB dysfunction. JNK may represent a potential therapeutic target for traumatic brain injuries.
-
Am. J. Physiol. Heart Circ. Physiol. · Aug 2014
β(2)-Adrenoreceptor blockade improves early posttrauma hyperglycemia and pulmonary injury in obese rats.
Early hyperglycemia after trauma increases morbidity and mortality. Insulin is widely used to control posttrauma glucose, but this treatment increases the risk of hypoglycemia. We tested a novel method for early posttrauma hyperglycemia control by suppressing hepatic glycogenolysis via β2-adrenoreceptor blockade [ICI-118551 (ICI)]. ⋯ Lung wet-to-dry weight ratios were increased in OZ rats but not in LZ rats. ICI treatment reduced the early hyperglycemia, lung neutrophil retention, MPO activity, and wet-to-dry weight ratio in OZ rats to levels comparable with those seen in LZ rats, with no effect on blood pressure or heart rate. These results demonstrate that β2-adrenoreceptor blockade effectively reduces the early posttrauma hyperglycemia, which is associated with decreased lung injury in OZ rats.
-
Journal of neurotrauma · Aug 2014
ReviewALTERATION IN SYNAPTIC JUNCTION PROTEINS FOLLOWING TRAUMATIC BRAIN INJURY.
Extensive research and scientific efforts have been focused on the elucidation of the pathobiology of cellular and axonal damage following traumatic brain injury (TBI). Conversely, few studies have specifically addressed the issue of synaptic dysfunction. ⋯ A Synapse Protein Database on synapse ontology identified 109 domains implicated in synaptic activities and over 5000 proteins, but few of these demonstrated to play a role in the synaptic dysfunction after TBI. These proteins are involved in neuroplasticity and neuromodulation and, most importantly, may be used as novel neuronal markers of TBI for specific intervention.