Articles: neuronavigation.
-
The implementation of intraoperative augmented reality fiber tractography (iAR-FT) into the surgical workflow for high-grade supratentorial gliomas has been shown to be effective and safe in maximizing the extent of resection and progression-free survival through the surgeon's enhanced 3-dimensional awareness of the spatial localization of fiber tracts.1-3 Primary motor area tumors present special challenges due to the high eloquence of the precentral gyrus and risk of postoperative onset or worsening of motor deficits, as well as limited postoperative plasticity.4 Although essential, electrical stimulation mapping (ESM) techniques have a number of limitations with respect to primary motor pathways, including a higher risk of intraoperative stimulation-evoked seizures, a risk of false negatives in the presence of preoperative deficits, a nonnegligible risk of permanent deterioration even in the presence of negative stimulation maps, and, most importantly, limited spatial resolution.4-8 The rationale for integrating ESM and iAR-FT is to compensate for the limitations of the former in terms of morphologic and spatial representation of fiber tracts. The benefits of coupling iAR-FT with ESM techniques allow for continuous integrated anatomical-functional feedback during surgery. In Video 1 we describe the key technical aspects and benefits of iAR-FT-assisted surgery for maximal safe gross total resection of a primary motor area grade IV astrocytoma.
-
Awake craniotomies are often performed with rigid pin fixation to support optical neuronavigation. Newer electromagnetic (EM) neuronavigation technology now enables unpinned cranial neurosurgery while maintaining robust intraoperative image guidance. Here, we share technical nuances, operative pearls, and lessons learned from our institutional experience using Curve EM neuronavigation during awake, unpinned craniotomies. ⋯ The technical pearls outlined here will help interested neurosurgeons integrate EM neuronavigation into awake craniotomies. In our experience, using unpinned neuronavigation during awake cases provides many advantages to the patient, surgeon, and entire operative team. It has thus become the standard practice at our institution.
-
Arch Orthop Trauma Surg · Jun 2023
Accuracy of pedicle screw placement using neuronavigation based on intraoperative 3D rotational fluoroscopy in the thoracic and lumbar spine.
In spinal surgery, precise instrumentation is essential. This study aims to evaluate the accuracy of navigated, O-arm-controlled screw positioning in thoracic and lumbar spine instabilities. ⋯ Combination of neuronavigation and 3D rotational fluoroscopy control ensures excellent accuracy in pedicle screw positioning. As misplaced screws can be detected reliably and revised intraoperatively, repeated surgery for screw malposition is rarely required.
-
Stereoencephalography (SEEG) is becoming a widespread diagnostic procedure for drug-resistant epilepsy investigation. Techniques include frame-based and robot-assisted implantation, and more recently, frameless neuronavigated systems (FNSs). Despite its recent use, the accuracy and safety of FNS are still under investigation. ⋯ Implantation of depth electrodes for SEEG using FNS seems to be safe, but larger prospective studies are needed to validate these results. Accuracy is sufficient for noninsular trajectories but warrant caution for insular trajectories with statistically significantly less accuracy.
-
J Clin Monit Comput · Jun 2023
Scalp blocks do not affect the accuracy of neuronavigation facial recognition registration.
Scalp block is a regional anesthesia technique to reduce the sympathetic response to skull pin application and postoperative pain in patients undergoing craniotomy. These blocks are often performed prior to surgical incision, however, the effect that these blocks have on neuronavigation facial tracing recognition accuracy is unclear because they may distort facial anatomy. ⋯ Scalp block does not interfere with neuronavigation facial recognition accuracy during neurosurgical procedures.