Articles: traumatic-brain-injuries.
-
Review Meta Analysis
Meta-analysis with Trial Sequential Analysis on the Efficacy and Safety of Erythropoietin in Traumatic Brain Injury: A New Paradigm.
Erythropoietin (EPO) has been shown to be beneficial in traumatic brain injury (TBI). We have attempted to quantitatively synthesize the findings of current randomized controlled trials (RCTs) in this meta-analysis and analyzed the need for further trials using trial sequential analysis (TSA). ⋯ EPO seems to be beneficial in terms of reducing 6-month mortality, however, its effect on in-hospital mortality, neurologic outcomes, and risk of deep vein thrombosis fails to reach statistical significance. TSA suggests a need for large trials to evaluate the role of EPO in patients with TBI in a more systematic way.
-
Journal of neurotrauma · Oct 2020
ReviewClinical applications of extracellular vesicles in the diagnosis and treatment of traumatic brain injury.
Extracellular vesicles (EVs) have emerged as key mediators of cell-cell communication during homeostasis and in pathology. Central nervous system (CNS)-derived EVs contain cell type-specific surface markers and intralumenal protein, RNA, DNA, and metabolite cargo that can be used to assess the biochemical and molecular state of neurons and glia during neurological injury and disease. ⋯ Additionally, their ability to cross the blood-brain barrier (BBB) has implications for both EV-based diagnostic strategies and for potential EV-based therapeutics. In the present review, we discuss encouraging data for EV-based diagnostic, prognostic, and therapeutic strategies in the context of TBI monitoring and management.
-
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new pandemic infectious disease that originated in China. COVID-19 is a global public health emergency of international concern. COVID-19 causes mild to severe illness with high morbidity and mortality, especially in preexisting risk groups. ⋯ COVID-19 can activate mast cells, neurons, glial cells, and endothelial cells. SARS-CoV-2 infection can cause psychological stress and neuroinflammation. In conclusion, COVID-19 can induce mast cell activation, psychological stress, cytokine storm, and neuroinflammation.
-
Despite multiple interventions, mortality due to severe traumatic brain injury (sTBI) within mature Trauma Systems has remained unchanged over the last decade. During this time, the use of vasoactive infusions (commonly norepinephrine) to achieve a target blood pressure and cerebral perfusion pressure (CPP) has been a mainstay of sTBI management. However, evidence suggests that norepinephrine, whilst raising blood pressure, may reduce cerebral oxygenation. This study aimed to review the available evidence that links norepinephrine augmented CPP to clinical outcomes for these patients. ⋯ Despite being a mainstay of pharmacological management for hypotension in patients following sTBI, there is minimal clinical evidence supporting the use of norepinephrine in targeting a CPP for either improving neurological outcomes or reducing mortality. Outcomes-based clinical trials exploring the role of brain tissue perfusion and oxygenation monitoring are required to validate any benefit.
-
J Neurosurg Anesthesiol · Oct 2020
Continuous Near-infrared Spectroscopy Monitoring in Adult Traumatic Brain Injury: A Systematic Review.
Near-infrared spectroscopy (NIRS) may provide a noninvasive way to monitor cerebral oxygenation in patients with traumatic brain injury, therein allowing for timely intervention aimed at reversing regional brain tissue hypoxia. We conducted a systematic review of NIRS-based oximetry measurements and their association with (A) patient functional outcome (B) other neurophysiological parameters. We searched MEDLINE, EMBASE, SCOPUS, BIOSIS, GlobalHealth and Cochrane Databases from inception to December 2018 and relevant conference proceedings published over the last 5 years. ⋯ Notwithstanding significant gaps in the currently available literature, our analysis suggests a link between NIRS-detected cerebral hypoxia during the acute phase of traumatic brain injury and poor functional outcome. NIRS measurements appear to reflect changes in intracranial pressure, invasively monitored brain tissue oxygen tension and various cerebrovascular reactivity indices although low quality contradicting data exist. More importantly, our review highlights the need for more prospective work before routine integration of NIRS-based techniques into multimodality monitoring regimen.