Articles: hyperalgesia.
-
Anesthesia and analgesia · Apr 2016
A Comparison of the Effects of Burst and Tonic Spinal Cord Stimulation on Hyperalgesia and Physical Activity in an Animal Model of Neuropathic Pain.
Parameters of spinal cord stimulation (SCS) play a role in its effectiveness and may impact SCS mechanisms and outcomes. For example, SCS applied in a bursting pattern may result in better pain relief than that for tonic SCS for neuropathic pain. We tested the effectiveness of different SCS pulse frequencies given at 2 different burst frequencies in an animal model of neuropathic pain. ⋯ The current study shows that a variety of SCS pulse frequencies applied with a burst frequency result in greater improvement in hyperalgesia and activity levels than tonic SCS in a neuropathic pain model during stimulation.
-
The role of peripheral sigma-1 receptors (Sig-1Rs) in normal nociception and in pathologically induced pain conditions has not been thoroughly investigated. Since there is mounting evidence that Sig-1Rs modulate ischaemia-induced pathological conditions, we investigated the role of Sig-1Rs in ischaemia-induced mechanical allodynia (MA) and addressed their possible interaction with acid-sensing ion channels (ASICs) and P2X receptors at the ischaemic site. ⋯ Peripheral Sig-1Rs contribute to the induction of ischaemia-induced MA via facilitation of ASICs and P2X receptors. Thus, peripheral Sig-1Rs represent a novel therapeutic target for the treatment of ischaemic pain.
-
Accumulating evidence indicates that spinal inflammatory and immune responses play an important role in the process of radicular pain caused by intervertebral disk herniation. Resolvin D1 (RvD1) has been shown to have potent antiinflammatory and antinociceptive effects. The current study was undertaken to investigate the analgesic effect of RvD1 and its underlying mechanism in rat models of noncompressive lumbar disk herniation. ⋯ The current study showed that RvD1 might alleviate neuropathic pain via regulating inflammatory mediators and NF-κB/p65 and p-ERK pathways. Its antiinflammatory and proresolution properties may offer novel therapeutic approaches for the management of neuropathic pain.
-
Editorial Comment
How can we prevent opioid induced hyperalgesia in surgical patients?
-
Masticatory muscle pain may occur following immediate occlusal alteration by dental treatment. The underlying mechanisms are poorly understood. Transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channel-3 (ASIC3) mediate muscle hyperalgesia under various pathologic conditions. We have developed a rat model of experimental occlusal interference (EOI) that consistently induces mechanical hyperalgesia in jaw muscles. Whether TRPV1 and ASIC3 mediate this EOI-induced hyperalgesia is unknown. ⋯ Peripheral TRPV1 and ASIC3 contribute to the development of the EOI-induced mechanical hyperalgesia in masseter muscle.