Articles: hyperalgesia.
-
Reg Anesth Pain Med · Mar 2013
Resveratrol facilitates pain attenuation in a rat model of neuropathic pain through the activation of spinal Sirt1.
Little research has been conducted regarding the implications of Sirt1 (a classic III HDAC) in neuropathic pain. The aim of this study was to investigate the variation in the expressions of spinal Sirt1 and acetyl-histone H3 in a rat model of chronic constriction injury. ⋯ Our data provide new evidence for the contribution of spinal Sirt1 to the initiation and maintenance of neuropathic pain. The antinociceptive effects of resveratrol may be mediated through the activation of spinal Sirt1 in CCI rats.
-
Yonsei medical journal · Mar 2013
Intrathecal lamotrigine attenuates mechanical allodynia and suppresses microglial and astrocytic activation in a rat model of spinal nerve ligation.
Lamotrigine, a novel anticonvulsant, is a sodium channel blocker that is efficacious in certain forms of neuropathic pain. Recently, microglial and astrocytic activation has been implicated in the development of nerve injury-induced neuropathic pain. We have assessed the effects of continuous intrathecal administration of lamotrigine on the development of neuropathic pain and glial activation induced by L5/6 spinal-nerve ligation in rats. ⋯ Continuously administered intrathecal lamotrigine blocked the development of mechanical allodynia induced by SNL with suppression of microglial and astrocytic activation. Continuous intrathecal administration of lamotrigine may be a promising therapeutic intervention to prevent neuropathy.
-
Reg Anesth Pain Med · Mar 2013
Effects of chronic administration of amitriptyline, gabapentin and minocycline on spinal brain-derived neurotrophic factor expression and neuropathic pain behavior in a rat chronic constriction injury model.
In animal models of neuropathic pain (NP), promising results have been reported with the administration of minocycline, possibly through inhibition of spinal brain-derived neurotrophic factor (BDNF) expression. No data are available on the effect of amitriptyline and gabapentin on spinal BDNF expression. If the mechanism of action of the latter drugs does not involve brain-derived NP inhibition, further clinical research in BDNF is warranted. ⋯ Minocycline and amitriptyline both reduce NP behavior in a sciatic CCI rat model, but only minocycline reduces spinal BDNF, indicating different modes of action of these 2 drugs. The observed actions of minocycline closely fit the clinical needs for the treatment of NP.
-
Opioids may cause progressive enhancement of pain sensitivity (opioid-induced hyperalgesia [OIH]) and thus, exacerbate existing pain. Animal studies also demonstrate paradoxical OIH with an ultralow dose (ULD, subanalgesic) of opioid; eg, the μ-opioid, morphine. Repeated administration of ULD-morphine resulted in tolerance to ULD-OIH. Prior exposure to ULD-morphine prolonged subsequent morphine antinociception in intact rats (delay of tolerance) and blocked neuropathic pain in nerve-injured rats (no hyperalgesia). Hence, pre-emptive desensitization of the excitatory function of opioid receptors may reduce further activation of a pain facilitatory system exerted by opioid or nerve injury. ⋯ Pre-emptive use of ULD μ-opioid (not κ-opiod) blocked initiation (not maintenance) of neuropathic pain after CCI in rats. These data may suggest a novel treatment approach in situations when the potential development of neuropathy can be anticipated.