Articles: hyperalgesia.
-
Pharmacol. Biochem. Behav. · May 2011
Formalin-induced long-term secondary allodynia and hyperalgesia are maintained by descending facilitation.
This work analyzes the role of cholecystokinin (CCK) receptors, dynorphin A₁₋₁₇ and descending facilitation originated in the rostral ventromedial medulla (RVM) on secondary allodynia and hyperalgesia in formalin-injected rats. Formalin injection (50 μL, 1%, s.c.) produced acute nociception (lasting 1 h) and long-term secondary allodynia and hyperalgesia in ipsilateral and contralateral hind paws (lasting 1-12 days). Once established, intra-RVM administration of lidocaine at day 6, but not at 2, reversed secondary allodynia and hyperalgesia in rats. ⋯ Moreover, intrathecal administration of dynorphin antiserum reversed, but was unable to prevent, secondary allodynia and hyperalgesia in both hind paws. These results suggest that formalin-induced secondary allodynia and hyperalgesia are maintained by activation of descending facilitatory mechanisms which are dependent on CCK₂ receptors located in the RVM and spinal cord. In addition, data suggest that spinal dynorphin A₁₋₁₇ and CCK play an important role in formalin-induced secondary allodynia and hyperalgesia.
-
Opioid-induced hyperalgesia (OIH) and tolerance are challenging maladaptations associated with opioids in managing pain. Recent genetic studies and the existing literature suggest the 5-hydroxytryptamine type 3 (5-HT3) receptor participates in these phenomena. The location of the relevant receptor populations and the interactions between the 5-HT3 system and other systems controlling OIH and tolerance have not been explored, however. We hypothesized that 5-HT3 receptors modulate OIH and tolerance, and that this modulation involves the control of expression of multiple neurotransmitter and receptor systems. ⋯ Morphine acts via a 5-HT3-dependent mechanism to support multiple maladaptations to the chronic administration of morphine. Furthermore, the use of 5-HT3 receptor antagonists may provide a new avenue to prevent or reverse OIH and tolerance associated with chronic opioid use.
-
Despite the increasing interest in TRPA1 channel as a pain target, its role in cold sensation and body temperature regulation is not clear; the efficacy and particularly side effects resulting from channel blockade remain poorly understood. Here we use a potent, selective, and bioavailable antagonist to address these issues. A-967079 potently blocks human (IC(50): 51 nmol/L, electrophysiology, 67 nmol/L, Ca(2+) assay) and rat TRPA1 (IC(50): 101 nmol/L, electrophysiology, 289 nmol/L, Ca(2+) assay). ⋯ Unlike TRPV1 antagonists, A-967079 does not alter body temperature. It also does not produce locomotor or cardiovascular side effects. Collectively, these data provide novel insights into TRPA1 function and suggest that the selective TRPA1 blockade may present a viable strategy for alleviating pain without untoward side effects.
-
Reg Anesth Pain Med · May 2011
Comparative StudyTransient heat hyperalgesia during resolution of ropivacaine sciatic nerve block in the rat.
Preliminary studies using perineural sciatic ropivacaine in rat demonstrated unexpected heat hyperalgesia after block resolution. To better characterize the time course relative to mechanical anesthesia-analgesia, we tested the hypothesis that ropivacaine 0.5% leads to transient heat hyperalgesia in rats independent of mechanical nociception. We also evaluated functional toxicity (eg, long-term hyperalgesia and/or tactile allodynia 2 weeks after injection). ⋯ Ropivacaine 0.5% induces transient heat hyperalgesia in the setting of resolved mechanical analgesia, further suggestive of modality and/or nociceptive fiber specificity. Whether this finding partially translates to "rebound pain" after patients' nerve blocks wear off requires further study.