Articles: hyperalgesia.
-
Randomized Controlled Trial Clinical Trial
Gut pain and hyperalgesia induced by capsaicin: a human experimental model.
Human experimental visceral pain models using chemical stimulation are needed for the study of visceral hyperexcitability. Our aim was to stimulate the human gut with chemical activators (capsaicin, glycerol) and measure quantitatively the induced hyperexcitability to painful mechanical gut distension. Ten otherwise healthy subjects with an ileostoma participated. ⋯ No significant manifestations were found after application of glycerol and saline. Application of capsaicin to the human ileum induces pain and mechanical hyperalgesia. Specific activation of nociceptors in the gut mucosa provides new possibilities to study clinical relevant visceral pain mechanisms.
-
Randomized Controlled Trial Clinical Trial
Differential modulation of remifentanil-induced analgesia and postinfusion hyperalgesia by S-ketamine and clonidine in humans.
Experimental studies and clinical observations suggest a possible role for opioids to induce pain and hyperalgesia on withdrawal. The authors used a new experimental pain model in human skin to determine the time course of analgesic and hyperalgesic effects of the mu-receptor agonist remifentanil alone or in combination with the N-methyl-D-aspartate-receptor antagonist S-ketamine or the alpha(2)-receptor agonist clonidine. ⋯ Opioid-induced postinfusion hyperalgesia could be abolished by S-ketamine, suggesting an N-methyl-d-aspartate-receptor mechanism. In contrast, elevated pain ratings after infusion were not reduced by ketamine but were alleviated by the alpha(2)-receptor agonist clonidine. The results of this study suggest different mechanisms of opioid-induced postinfusion antianalgesia and secondary hyperalgesia.
-
Randomized Controlled Trial Clinical Trial
Injection of nerve growth factor into human masseter muscle evokes long-lasting mechanical allodynia and hyperalgesia.
Nerve growth factor (NGF) is a neurotrophic protein with a pivotal role in development and maintenance of the nervous system on one side and inflammatory and neuropathic pain states on the other. NGF causes clear signs of behavioral hyperalgesia in animal models and following intradermal and systemic administration in humans. The present double-blinded, placebo-controlled study was designed to test quantitatively the effect and duration (1h, 1, 7, 14, 21 and 28 days) of NGF (5 microg in 0.2 ml) injected into the masseter muscle. ⋯ Systemic adverse effects were noted in one subject who reported fever and slight discomfort about 8h after the NGF injection. In conclusion, this is the first study to show that injection of NGF into the human masseter muscle causes local signs of mechanical allodynia and hyperalgesia that persist for at least 7 days as well as pain during strenuous jaw movement. The present pain model is safe and may be used to gain further insight into the neurobiological mechanisms of muscle pain and sensitization.
-
Randomized Controlled Trial Clinical Trial
Postoperative morphine use and hyperalgesia are reduced by preoperative but not intraoperative epidural analgesia: implications for preemptive analgesia and the prevention of central sensitization.
The aim of this study was to evaluate the postoperative morphine-sparing effects and reduction in pain and secondary mechanical hyperalgesia after preincisional or postincisional epidural administration of a local anesthetic and an opioid compared with a sham epidural control. ⋯ Preincisional administration of epidural lidocaine and fentanyl was associated with a significantly lower rate of morphine use, lower cumulative morphine consumption, and reduced hyperalgesia compared with a sham epidural condition. These results highlight the importance of including a standard treatment control group to avoid the problems of interpretation that arise when two-group studies of preemptive analgesia (preincisional vs. postsurgery) fail to find the anticipated effects.
-
Randomized Controlled Trial Clinical Trial
Peripheral opioid analgesia in experimental human pain models.
This placebo-controlled, double-blind crossover study assessed whether exclusive activation of peripheral opioid receptors results in significant pain reduction. To achieve opioid activity restricted to the periphery, we used a short-term (2 h) low dose infusion of morphine-6-beta-glucuronide (M6G) because M6G does not pass the blood-brain barrier during this time in amounts sufficient to induce CNS effects. The lack of central opioid effects of M6G was confirmed by a lack of change of the pupil size and absence of other opioid-related CNS effects. ⋯ Subcutaneous tissue concentrations of M6G and morphine as assessed with microdialysis were about half those of the respective plasma concentrations. The results of the study indicate that M6G has antihyperalgesic effects in inflammatory pain through activation of peripheral opioid receptors. Since this occurs at concentrations that do not cause central opioid effects, M6G might be useful as a peripheral opioid analgesic.