Articles: manganese.
-
Meta Analysis
Manganese levels and hepatocellular carcinoma: A systematic review and meta-analysis based on Asian cohort.
Several studies have investigated the relationship between Manganese (Mn) levels and hepatocellular carcinoma (HCC), but the results were inconsistent. Thus, we conducted a systematic review and meta-analysis to evaluate the association between Mn levels and HCC. Nine studies focusing on hair Mn levels, 6 studies on serum Mn levels and 6 studies on tissue Mn levels were identified in a systematic search of PubMed, CNKI, Wanfang and SinoMed databases. ⋯ In tissue, the Mn levels in tumors were significantly lower than in adjacent normal tissues (SMD (95% CI): -4.867 (-7.143, -2.592)). Subgroup analysis showed consistent results. In conclusion, this meta-analysis suggested an inverse association between Mn levels and HCC.
-
Neurotoxic effects of high-level occupational exposure to manganese (Mn) are well established; however, whether lower-level environmental exposure to Mn in early life causes neurodevelopmental toxicity in children is unclear. ⋯ The statistical associations reported in the few studies of specific Mn biomarkers and specific neurodevelopmental endpoints do not establish causal effects based on the Bradford Hill considerations. Additional prospective cohort studies of Mn biomarkers and validated neurodevelopmental outcomes, and a better understanding of the etiologic relevance of Mn biomarkers, are needed to shed light on whether environmental exposure to Mn causes adverse neurodevelopmental effects in children.
-
Tendon injures cause a great deal of disability and pain, and increase medical costs. However, relatively little is known about tendon biology and healing. Many tendon-related surgical procedures are not very successful and leave the patient with essentially a chronic injury. ⋯ More research on nutrition and tendon health is needed. Because many nutrients are required for tendon health, nutritional interventions involving multiple nutrients may be more effective than single-nutrient strategies. In the future, ideal treatment regimens for tendon injuries may include a multifaceted "bundle" of nutrition, drugs, biologic products, extracellular matrix therapies, exercise/physical therapy, and possibly surgery.
-
The gut microbiome comprises the collective genome of the trillions of microorganisms residing in our gastrointestinal ecosystem. The interaction between the host and its gut microbiome is a complex relationship whose manipulation could prove critical to preventing or treating not only various gut disorders, like irritable bowel syndrome (IBS) and ulcerative colitis (UC), but also central nervous system (CNS) disorders, such as Alzheimer's and Parkinson's diseases. The purpose of this review is to summarize what is known about the gut microbiome, how it is connected to the development of disease and to identify the bacterial and biochemical targets that should be the focus of future research. Understanding the mechanisms behind the activity and proliferation of the gut microbiome will provide us new insights that may pave the way for novel therapeutic strategies.
-
Review Meta Analysis
Plasma nutrient status of patients with Alzheimer's disease: Systematic review and meta-analysis.
Alzheimer disease (AD) patients are at risk of nutritional insufficiencies because of physiological and psychological factors. Nutritional compounds are postulated to play a role in the pathophysiological processes that are affected in AD. We here provide the first systematic review and meta-analysis that compares plasma levels of micronutrients and fatty acids in AD patients to those in cognitively intact elderly controls. A secondary objective was to explore the presence of different plasma nutrient levels between AD and control populations that did not differ in measures of protein/energy nourishment. ⋯ The lower plasma nutrient levels indicate that patients with AD have impaired systemic availability of several nutrients. This difference appears to be unrelated to the classic malnourishment that is well known to be common in AD, suggesting that compromised micronutrient status may precede protein and energy malnutrition. Contributing factors might be AD-related alterations in feeding behavior and intake, nutrient absorption, alterations in metabolism, and increased utilization of nutrients for AD pathology-related processes. Given the potential role of nutrients in the pathophysiological processes of AD, the utility of nutrition may currently be underappreciated and offer potential in AD management.