Articles: oligonucleotide-array-sequence-analysis.
-
Susceptibility to rheumatic diseases, such as osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, systemic lupus erythematosus, juvenile idiopathic arthritis and psoriatic arthritis, includes a large genetic component. Understanding how an individual's genetic background influences disease onset and outcome can lead to a better understanding of disease biology, improved diagnosis and treatment, and, ultimately, to disease prevention or cure. The past decade has seen great progress in the identification of genetic variants that influence the risk of rheumatic diseases. ⋯ In this Review, the major insights from genetic studies, gained from advances in technology, bioinformatics and study design, are discussed in the context of rheumatic disease. In addition, pivotal genetic studies in the main rheumatic diseases are highlighted, with insights into how these studies have changed the way we view these conditions in terms of disease overlap, pathways of disease and potential new therapeutic targets. Finally, the limitations of genetic studies, gaps in our knowledge and ways in which current genetic knowledge can be fully translated into clinical benefit are examined.
-
The traditional hypothesis-driven scientific approach cannot so far sufficiently elucidate complex pathophysiologies, such as posttraumatic systemic inflammation and subsequent multiple organ failure. This complex system includes different biological and functional levels, the genome, the transcriptome, the proteome, the biome (cells), the organs and finally the whole organism. ⋯ This article reviews important microarray findings in trauma and systemic inflammation research and discusses potentials and limitations of these biotechnological screening methods.
-
B Acad Nat Med Paris · Dec 2013
Review[Resequencing microarrays: a rapid tool for better identification and understanding of viral and bacterial emergence].
The introduction of microarray technologies in microbiology has transformed the detection and characterization of microbial pathogens. Microarray-based platforms can be classified into different families according to their characteristics and applications. Resequencing microarrays have several advantages over other technologies for pathogen detection and characterization.
-
Over the past decade several investigators have applied microarray technology and related bioinformatic approaches to clinical sepsis and septic shock, thus allowing for an assessment of how, or if, this branch of genomic medicine has meaningfully impacted the field of sepsis research. The ability to simultaneously and efficiently measure the steady-state mRNA abundance of thousands of transcripts from a given tissue source (that is, 'transcriptomics') has provided an unprecedented opportunity to gain a broader, genome-level 'picture' of complex and heterogeneous clinical syndromes such as sepsis. ⋯ These include a genome-level understanding of the complexity of sepsis and septic shock, identification of novel candidate pathways and targets for potential intervention, discovery of novel, candidate diagnostic and stratification biomarkers, and the ability to stratify patients into clinically relevant, expression-based subclasses. The challenges moving forward include robust validation studies, standardization of technical approaches, standardization and further development of analytical algorithms, and large-scale collaborations.
-
Arch. Immunol. Ther. Exp. (Warsz.) · Feb 2011
ReviewRelapse of acute lymphoblastic leukemia in children in the context of microarray analyses.
Over the last four decades the treatment of patients with newly diagnosed childhood acute lymphoblastic leukemia (ALL) has improved remarkably. However, still about 20% of children with ALL relapse despite risk-adapted polychemotherapy. The prognosis of relapsed ALL is relatively poor, even with modern aggressive chemotherapy. ⋯ Current microarray data show correlation of in vitro drug resistance with significant patterns of gene expression and explain clinical differences between early and late relapse. Genes involved in cell proliferation, self-renewal and differentiation, protein biosynthesis, carbohydrate metabolism, and DNA replication and repair are usually among those highly expressed in relapsed lymphoblasts. Current status and future perspectives of microarray data on gene expression and drug resistance profile in relapsed pediatric ALL are discussed in this review.