Articles: gaba-modulators-pharmacology.
-
The role of preemptive treatment with volatile and intravenous anesthetics has been examined in previous studies using the rat formalin test. Evidence describing analgesic properties of the gamma-amino butyric acid-ergic (GABAergic) steroid anesthetics, such as alphaxalone, suggest that they may suppress the development of central sensitization to pain. This study examined the preemptive effects of phaxalone in comparison with other GABAergic anesthetics, propofol and pentobarbital. ⋯ Whereas alphaxalone was shown to produce preemptive analgesia through its action at the GABA(A) receptor, pentobarbital and propofol, which also are known to act at this site, showed no analgesic effects. The diversity of receptor subtypes and functional complexity of GABA(A) receptors is such that steroid anesthetics may have effects that are different from other GABAergic agents. Further research into the role of progesterone metabolites and steroid anesthetics in the prevention of central sensitization may have clinical implications for the treatment of acute or chronic pain.
-
1. Human GABAA receptors containing different alpha and beta subunits with a gamma 2s subunit were expressed in Xenopus oocytes and the effects of pentobarbitone on these subunit combinations were examined by electrophysiological recording of GABA currents with the two-electrode voltage-clamp method. 2. Pentobarbitone has previously been shown to have three actions on GABAA receptors: a potentiation of GABA responses, a direct activation of GABAA receptors and, at high concentrations, a block of the GABA chloride channel. ⋯ The direct effect of pentobarbitone was blocked by picrotoxin but not by competitive antagonists, such as bicuculline or SR95531, indicating that the direct agonist activity of pentobarbitone was not mediated via the GABA binding site. 7. For the first time the influence of the various alpha and beta subunits on the effects of pentobarbitone were demonstrated. The results indicate that GABAA receptors containing alpha 6 subunits have both a higher affinity and efficacy for direct activation by pentobarbitone, and reveal that pentobarbitone binds to more than one site on the GABAA receptor, and these are dependent on receptor subunit composition.
-
The anaesthetic profile of a novel water-soluble aminosteroid, Org 20599 [(2 beta, 3 alpha, 5 alpha)-21-chloro-3-hydroxy-2-(4-morpholinyl)pregnan-20-one methanesulphonate], and the ability of the compound to allosterically regulate the activity of the GABAA receptor, have been studied in comparison to the properties of established intravenous general-anaesthetic agents. Intravenously administered Org 20599 produced a rapid onset, short duration loss of the righting reflex in mice. The anaesthetic potency of Org 20599 was comparable to that of the steroids 5 alpha-pregnan-3 alpha-ol-20-one or alphaxalone, and exceeded that of propofol, thiopentone or pentobarbitone. ⋯ Such direct agonism varied greatly in maximal effect between compounds. The modulatory and direct agonist actions of Org 20599 were additionally confirmed utilizing rat hippocampal neurones in culture. The results indicate Org 20599 to be a potent and short-acting intravenous anaesthetic agent in mice and suggest positive allosteric regulation of GABAA receptor function to be a plausible molecular mechanism of action for the drug.
-
Clin. Pharmacol. Ther. · Nov 1995
Clinical TrialPharmacodynamic modeling of the electroencephalographic effects of flumazenil in healthy volunteers sedated with midazolam.
The purpose of this study was to model pharmacodynamically the reversal of midazolam sedation with flumazenil. Ten human volunteers underwent four different sessions. In session 1, individual midazolam pharmacokinetics and electroencephalographic pharmacodynamics were determined. ⋯ For a light sedation level, with a mean midazolam plasma concentration of 160 +/- 64 ng/ml, the mean half-life of the equilibration rate constant of flumazenil reversal is 5.0 +/- 2.5 minutes, and the mean effect site concentration causing 50% of Emax is 13.7 +/- 5.8 ng/ml. For a deep level of sedation, with a mean midazolam plasma concentration of 551 +/- 196 ng/ml, the mean half-life of the equilibration rate constant is 3.9 +/- 1.5 minutes, and the mean effect site concentration causing 50% of Emax is 20.6 +/- 6.8 ng/ml. This study provides an estimate of the magnitude of the blood/central nervous system equilibration delay for flumazenil antagonism of midazolam sedation and further defines the usefulness of the electroencephalogram as a measure of midazolam pharmacodynamic effect.
-
J. Pharmacol. Exp. Ther. · Apr 1995
Modulation of basal and stress-induced release of acetylcholine and dopamine in rat brain by abecarnil and imidazenil, two anxioselective gamma-aminobutyric acidA receptor modulators.
The effects of imidazenil (6-(2-bromophenyl)-8-fluoro-4-H-imidazo[1-5-a][1-4]benzodiazepine-3- carboxamide) and abecarnil (isopropyl-6-benzyloxy-4-methoxymethyl-beta-carboline-3-carboxylate), new partial and selective benzodiazepine recognition site agonists, respectively, on basal and stress-induced hippocampal acetylcholine and cortical dopamine release were determined with the microdialysis technique in freely moving rats. The actions of these new anxioselective and anticonvulsant drugs were compared with those of diazepam and midazolam, two classical benzodiazepine full agonists. Abecarnil (0.05-1 mg/kg i.p.), imidazenil (0.05-1 mg/kg i.p.), diazepam (2.5-10 mg/kg i.p.) and midazolam (2.5-10 mg/kg i.p.) inhibited basal hippocampal acetylcholine release in a dose-dependent manner. ⋯ Foot-shock stress (0.2 mA for 500 msec/sec) delivered for 8 min induced a rapid and marked (+75%) increase in hippocampal acetylcholine output that persisted for approximately 40 min. Foot-shock stress also increased dopamine release in the cerebral cortex; the effect was maximal (+90%) after 20 min and persisted for approximately 30 min. Prior administration of abecarnil or imidazenil at a dose (0.05 mg/kg) that did not significantly affect the basal release of either acetylcholine or dopamine completely prevented the effect of stress on the output of these neurotransmitters, an effect mimicked by higher doses of diazepam (2.5 mg/kg) and midazolam (2.5 mg/kg).(ABSTRACT TRUNCATED AT 250 WORDS)