Articles: brain-injuries.
-
There is a need for refined methods to detect and quantify brain injuries that may be undetectable by magnetic resonance imaging and neurologic examination. This review evaluates the potential efficacy of circulating brain injury biomarkers for predicting outcomes following elective neurosurgical procedures. ⋯ Circulating brain injury biomarkers show promise for providing objective insights into the extent of perioperative brain injury and improving prognostication of postsurgical outcomes. However, the heterogeneity in study designs and outcomes along with the lack of standardized biomarker thresholds underscore the need for further research.
-
Today, invasive intracranial pressure (ICP) measurement remains the standard, but its invasiveness limits availability. Here, we evaluate a novel ultrasound-based optic nerve sheath parameter called the deformability index (DI) and its ability to assess ICP noninvasively. Furthermore, we ask whether combining DI with optic nerve sheath diameter (ONSD), a more established parameter, results in increased diagnostic ability, as compared to using ONSD alone. ⋯ Combining ONSD with DI holds the potential of increasing the ability of optic nerve sheath parameters in the noninvasive assessment of ICP, compared to using ONSD alone, and further study of DI is warranted.
-
Traumatic brain injury (TBI) presents complex clinical challenges, requiring a nuanced understanding of its pathophysiology and current management principles to improve patient outcomes. Anesthetists play a critical role in care and need to stay updated with recent evidence and trends to ensure high-quality treatment. The Brain Trauma Foundation Guidelines, last updated in 2016, have shown moderate adherence, and much of the current management relies on expert opinions. This literature review synthesizes the current evidence and provides insights into the role of anesthetists in TBI management. ⋯ Anesthesia for TBI patients requires a comprehensive approach that balances anesthetic goals with the unique pathophysiological factors of brain injury. Despite recent research expanding our understanding, challenges remain in standardizing protocols and addressing individual patient response variability. Adherence to established management principles, personalized approaches, and ongoing research is crucial for improving the outcomes.
-
Journal of neurotrauma · Oct 2024
Randomized Controlled Trial Multicenter StudyPredicting Progression of Intracranial Hemorrhage in the Prehospital TXA for TBI Trial.
Progression of intracranial hemorrhage is a common, potentially devastating complication after moderate/severe traumatic brain injury (TBI). Clinicians have few tools to predict which patients with traumatic intracranial hemorrhage on their initial head computed tomography (hCT) scan will progress. The objective of this investigation was to identify clinical, imaging, and/or protein biomarkers associated with progression of intracranial hemorrhage (PICH) after moderate/severe TBI and to create an accurate predictive model of PICH based on clinical features available at presentation. ⋯ Models composed of machine-selected features performed better than models composed of expert-selected variables (reaching an average of 77% accuracy, AUC = 0.78 versus AUC = 0.68 for the expert-selected variables). Predictive models utilizing variables measured at admission can accurately predict PICH, confirmed by the 6-hour follow-up hCT. Our best-performing models must now be externally validated in a separate cohort of TBI patients with low GCS and initial hCT positive for hemorrhage.
-
Intracranial pressure (ICP) monitoring and monitoring of brain tissue oxygen (Pbto2) in addition to ICP have been used in the management of traumatic brain injury (TBI). However, the optimal monitoring method is inconclusive. We searched 4 databases with no language restrictions through January 2024 for peer-reviewed randomized controlled trials (RCTs) comparing ICP monitoring with combined Pbto2 and ICP monitoring in patients with traumatic brain injury. ⋯ There was no difference in favorable neurologic outcome (risk ratio: 1.21; 95% confidence interval: 0.93, 1.58; I2: 45%; 5 RCTs: 512 patients; moderate certainty) and survival (risk ratio: 1.10; 95% confidence interval: 0.99, 1.21; I2: 13%; 5 RCTs: 512 patients; moderate certainty). We found no evidence that the combination of Pbto2 and ICP is more useful than ICP. The included RCTs are few and small, and further study is needed to draw conclusions.