• Neuroscience · Nov 2020

    Modulation of Corticospinal Excitability with Contralateral Arm Cycling.

    • Evan J Lockyer, Niketa Soran, and Kevin E Power.
    • The Human Neurophysiology Lab, School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland, Canada; Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
    • Neuroscience. 2020 Nov 21; 449: 88-98.

    AbstractThis is the first study to examine the influence of activity in one limb on corticospinal excitability to the contralateral limb during a locomotor output. Corticospinal and spinal excitability to the biceps brachii of the ipsilateral arm were assessed using transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid electrical stimulation (TMES) of corticospinal axons, respectively. Responses were evoked during the mid-elbow extension position of arm cycling across three different cycling tasks: (1) bilateral arm cycling (BL), (2) unilateral, contralateral cycling with the ipsilateral arm moving passively (IP), and (3) unilateral, contralateral cycling with the ipsilateral arm at rest (IR). Each of these three tasks were performed at two cadences: 60 and 90 rpm. TMS-induced motor evoked potential (MEPs) amplitudes were significantly smaller during BL compared to the IP and IR conditions; however, MEP amplitudes were not significantly different between IP and IR. TMES-evoked cervicomedullary MEP (CMEPs) amplitudes followed a similar pattern of task-dependent modulation, with BL having the smallest CMEPs and IR having the largest. In line with our previous findings, MEP amplitudes increased and CMEP amplitudes decreased as the cadence increased from 60 to 90 rpm. We suggest that the higher corticospinal excitability to the ipsilateral limb during the IP and IR conditions was predominantly due to disinhibition at both the cortical and spinal levels.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.