-
- A Minelli, P Barbaresi, R J Reimer, R H Edwards, and F Conti.
- Istituto di Fisiologia Umana, Università di Ancona, Italy.
- Neuroscience. 2001 Jan 1; 108 (1): 51-9.
AbstractGlutamate transporter-1 (GLT-1) is responsible for the largest proportion of glutamate transport in the brain and the density of GLT-1 molecules inserted in the plasma membrane is highest in regions of high demand. Previous electron microscopic studies in the hippocampus and cerebellum have shown that GLT-1 is concentrated both in the vicinity of and at considerable distance from the synaptic cleft [Chaudry et al., Neuron 15 (1995) 711-721], but little is known about its distribution in the neocortex. We therefore studied the spatial relationships between elements expressing the presynaptic marker synaptophysin and those containing GLT-1 in the rat cerebral cortex using confocal microscopy. Preliminary studies confirmed that GLT-1 positive puncta were exclusively astrocytic processes; moreover, they showed that in most cases GLT-1 positive processes either completely surrounded asymmetric synapses or had no apparent relationship with synapses; occasionally, they were apposed to terminals containing pleomorphic vesicles. In sections double-labeled for GLT-1 and synaptophysin, codistribution analysis revealed that 61.2% of pixels detecting fluorescent emission for GLT-1 immunoreactivity overlapped with pixels detecting synaptophysin. The percentages of GLT-1/synaptophysin codistribution were significantly different from controls. In sections double-labeled for GLT-1 and the vesicular GABA transporter, codistribution analysis revealed that 27% of pixels detecting GLT-1 overlapped with those revealing the vesicular GABA transporter.The remarkable 'synaptic' localization of GLT-1 provides anatomical support for the hypothesis that in the cerebral cortex GLT-1 contributes to shaping fast, point-to-point, excitatory synaptic transmission. Moreover, the considerable fraction of GLT-1 immunoreactivity localized at sites distant from axon terminals supports the notion that glutamate spillout occurs also in the intact brain and suggests that 'extrasynaptic' GLT-1 regulates the diffusion of glutamate escaped from the cleft.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:

- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.