• J Neurosurg Anesthesiol · Jul 2001

    Effects of alterations in arterial CO2 tension on cerebral blood flow during acute intracranial hypertension in rats.

    • J Hauerberg, X Ma, R Bay-Hansen, D B Pedersen, P Rochat, and M Juhler.
    • Department of Neurosurgery and The Neurobiology Research Unit, The Neuroscience Center, Rigshospitalet, Copenhagen, Denmark.
    • J Neurosurg Anesthesiol. 2001 Jul 1;13(3):213-21.

    AbstractCerebrovascular reactivity to CO2 in clinical and experimental studies has been found to be impaired during increased intracranial pressure (ICP). However, from previous study results it has not been possible to estimate whether the impairment was caused by elevated ICP, or caused by decreased cerebral perfusion pressure (CPP). The current study was carried out in a group of unmanipulated control rats and in six investigation groups of six rats each: two groups with elevated ICP (30 and 50 mm Hg) and spontaneous arterial blood pressure (MABP), two groups with spontaneous ICP and arterial hypotension (77 and 64 mm Hg), and two groups with elevated ICP (30 and 50 mm Hg) and arterial hypertension (124 mm Hg). Intracranial hypertension was induced by continuous infusion of lactated Ringer's solution into the cisterna magna, arterial hypotension by controlled bleeding, and arterial hypertension by continuous administration of norepinephrine intravenously. Cerebral blood flow (CBF) was measured repetitively by the intraarterial 133Xe method at different levels of arterial PCO2. In each individual animal, CO2 reactivity was calculated from an exponential regression line obtained from the corresponding CBF/PaCO2 values. By plotting each individual value of CO2 reactivity against the corresponding CPP value from the seven investigation groups, CPP was significantly and directly related to CO2 reactivity of CBF (P < .001). No correlation was found by plotting CO2 reactivity values against the corresponding MABP values or the corresponding ICP values. Thus, the results show that CO2 reactivity is at least partially determined by CPP and that the impaired CO2 reactivity observed at intracranial hypertension and arterial hypotension may be caused by reduced CPP.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…