• Anesthesiology · Sep 2006

    Human skin microcirculation after brachial plexus block evaluated by wavelet transform of the laser Doppler flowmetry signal.

    • Svein A Landsverk, Per Kvandal, Trygve Kjelstrup, Uros Benko, Alan Bernjak, Aneta Stefanovska, Hebe Kvernmo, and Knut A Kirkeboen.
    • Department of Anesthesiology, Ulleval University Hospital, Oslo, Norway. s.a.landsverk@medisin.uio.no
    • Anesthesiology. 2006 Sep 1; 105 (3): 478-84.

    BackgroundThe skin microcirculation may be evaluated noninvasively by laser Doppler flowmetry and iontophoresis with acetylcholine and sodium nitroprusside. Wavelet transform of the perfusion signal shows periodic oscillations of five characteristic frequencies in the interval 0.0095-1.6 Hz. The aim of the current study was to investigate alterations in skin microcirculation induced by brachial plexus block, with emphasis on the periodic oscillations.MethodsHealthy nonsmokers undergoing hand surgery (n = 13) were anesthetized with brachial plexus block, using bupivacaine, lidocaine, and epinephrine. Skin microcirculation was evaluated by laser Doppler flowmetry and iontophoresis with acetylcholine and sodium nitroprusside before and after brachial plexus block. Wavelet transform of the perfusion signal was performed. As a control group, 10 healthy nonsmokers were included.ResultsIn the anesthetized arm, skin perfusion after brachial plexus block increased from 19 (12-30) to 24 (14-39) arbitrary units (P < 0.01). A significant increase was also seen in the contralateral arm from 17 (14-32) to 20 (14-42) arbitrary units (P < 0.01). After brachial plexus block, spectral analysis revealed a significant reduction in relative amplitude of the oscillatory components within the 0.0095- to 0.021- (P < 0.001) and 0.021- to 0.052-Hz (P < 0.001) intervals in the anesthetized arm.ConclusionAlterations in skin microcirculation induced by brachial plexus block can be evaluated by wavelet transform of the laser Doppler flowmetry signal. Brachial plexus block reduces the oscillatory components within the 0.0095- to 0.021- and 0.021- to 0.052-Hz intervals of the perfusion signal. These alterations are related to inhibition of sympathetic activity and a possible impairment of endothelial function.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…