• Neuroscience · Jan 2001

    Presynaptic regulation of spinal cord tachykinin signaling via GABA(B) but not GABA(A) receptor activation.

    • R C Riley, J A Trafton, S I Chi, and A I Basbaum.
    • Departments of Anatomy and Physiology and W. M. Keck Foundation Center for Integrative Neuroscience, University of California at San Francisco, San Francisco, CA 94143, USA.
    • Neuroscience. 2001 Jan 1; 103 (3): 725-37.

    AbstractInternalization of spinal cord neurokinin-1 receptors following noxious stimulation provides a reliable measure of tachykinin signaling. In the present study, we examined the contribution of GABAergic mechanisms to the control of nociceptor processing involving tachykinins. Spinal administration of the GABA(B) receptor agonist R(+)-baclofen in the rat, at antinociceptive doses, significantly reduced the magnitude of neurokinin-1 receptor internalization in neurons of lamina I in response to acute noxious mechanical or thermal stimulation. By contrast, administration of even high doses of the GABA(A) receptor agonists, muscimol or isoguvacine, were without effect. CGP55845, a selective GABA(B) receptor antagonist, completely blocked the effects of baclofen, but failed to increase the incidence of internalization when administered alone. These results provide evidence for a presynaptic control of nociceptive primary afferent neurons by GABA(B) but not GABA(A) receptors in the superficial laminae of the spinal cord, limiting tachykinin release. Because CGP5584 alone did not increase the magnitude of neurokinin-1 receptor internalization observed following noxious stimulation, there appears to be little endogenous activation of GABA(B) receptors on tachykinin-releasing nociceptors under acute stimulus conditions. The contribution of pre- and postsynaptic regulatory mechanisms to GABA(B) receptor-mediated antinociception was also investigated by comparing the effect of baclofen on Fos expression evoked by noxious stimulation to that induced by intrathecal injection of substance P. In both instances, baclofen reduced Fos expression not only in neurons that express the neurokinin-1 receptor, but also in neurons that do not. We conclude that baclofen acts at presynaptic sites to reduce transmitter release from small-diameter nociceptive afferents. Presynaptic actions on non-tachykinin-containing nociceptors could similarly account for the reduction by baclofen of noxious stimulus-induced Fos expression in neurokinin-1 receptor-negative neurons. However, the inhibition of Fos expression induced by exogenous substance P indicates that actions at sites postsynaptic to tachykinin- and/or non-tachykinin-containing primary afferent terminals must also contribute to the antinociceptive actions of GABA(B) receptor agonists.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,706,662 articles already indexed!

We guarantee your privacy. Your email address will not be shared.