• Neuroscience · Jan 2001

    Cross-tolerance to otherwise lethal N-methyl-D-aspartate and oxygen-glucose deprivation in preconditioned cortical cultures.

    • J S Tauskela, T Comas, K Hewitt, R Monette, J Paris, M Hogan, and P Morley.
    • National Research Council of Canada, Institute for Biological Sciences, Ottawa, ON, Canada. joe.tauskela@nrc.ca
    • Neuroscience. 2001 Jan 1; 107 (4): 571-84.

    AbstractIn vitro ischemic preconditioning induced by subjecting rat cortical cultures to nonlethal oxygen-glucose deprivation protects against a subsequent exposure to otherwise lethal oxygen-glucose deprivation. We provide evidence that attenuation of the postsynaptic N-methyl-D-aspartate (NMDA) receptor- and Ca(2+)-dependent neurotoxicity underlies oxygen-glucose deprivation tolerance. It is demonstrated that extended tolerance to otherwise lethal NMDA or oxygen-glucose deprivation can be induced by either of their sublethal forms of preconditioning. These four pathways are linked, since NMDA receptor blockade during preconditioning by oxygen-glucose deprivation eliminates tolerance. These results suggest that NMDA tolerance, induced by nonlethal activation of these receptors during oxygen-glucose deprivation preconditioning, underlies oxygen-glucose deprivation tolerance. Several neurotoxic downstream Ca(2+)-dependent signaling events specifically linked to NMDA receptor activation are attenuated during otherwise lethal oxygen-glucose deprivation in preconditioned cultures. Specifically, calpain activation, as well as degradation of microtubule-associated protein-2 and postsynaptic density-95, are attenuated 2 h following otherwise lethal NMDA treatment alone or oxygen-glucose deprivation in preconditioned cultures. Formation of microtubule-associated protein-2-labeled dendritic varicosities is also attenuated in preconditioned cultures within 1 h of lethal oxygen-glucose deprivation or NMDA application. Intracellular Ca(2+) levels, measured using the high- or low-affinity dyes Fluo-4 (K(d) approximately equal 345 nM) or Fluo-4FF (K(d) approximately equal 9.7 microM) respectively, are markedly attenuated during lethal oxygen-glucose deprivation in preconditioned cultures.Collectively, the results suggest the attenuation of the postsynaptic NMDA-mediated component of otherwise lethal oxygen-glucose deprivation through the suppression of Ca(2+)-dependent neurotoxic signaling, a mechanism that is initially induced by transient nonlethal activation of this receptor during ischemic preconditioning.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…