• Nutrition · Apr 2020

    Eicosapentaenoic acid prevents salt sensitivity in diabetic rats and decreases oxidative stress.

    • Marianela Vara-Messler, Jorge H Mukdsi, Natalia I Osieki, Evangelina Benizio, Gastón M Repossi, Ebenezer I O Ajayi, and Néstor H García.
    • University of Turin, Turin, Italy.
    • Nutrition. 2020 Apr 1; 72: 110644.

    ObjectivesSalt sensitivity (SS) is associated with increased cardiovascular risk in patients with Type 2 diabetes mellitus (T2-DM) due to an increase in renal oxidation. ω-3 polyunsaturated fatty acids have shown antioxidant effects, but a typical Western diet contains limited content. In particular, ω-3 polyunsaturated fatty acids are able to activate nuclear factor erythroid 2-related factor 2 (Nrf-2) to prevent diabetes mellitus-related complications by mitigating oxidative stress. Therefore, we hypothesized that eicosapentaenoic acid (EPA; ω-3) modulates SS in rats with T2-DM by decreasing renal oxidative stress via Nrf-2 activation and enhancing the antiinflammatory response via interleukin (IL) 6 modulation.MethodsThree-month-old male rats (n = 40) were fed with a Normal Na-diet (NNaD) and randomly selected into four groups: Healthy Wistar nondiabetic rats (Wi), diabetic controls (eSS), arachidonic acid-treated eSS (AA; ω-6), and EPA-treated eSS (ω-3). After 1 year, rats were placed in metabolic cages for 7 d and fed a NNaD, followed by a 7-d period with a High Na-diet (HNaD). Systolic blood pressure, body weight, serum IL-6 and reactive oxygen species (ROS) levels were determined at the end of each 7-d period. Glycated hemoglobin (HbA1c), triacylglycerol, creatinine, and cholesterol levels were determined. ROS levels and Nrf-2 expression in kidney lysates were also assayed. Histologic changes were evaluated. A t test or analysis of variance was used for the statistical analysis.ResultsAfter a HNaD, systolic blood pressure increased in both the control eSS and AA groups, but not in the EPA and Wi groups. However, HbA1c levels remained unchanged by the treatments, which suggests that the observed beneficial effect was independent of HbA1c levels. The IL-6 levels were higher in the eSS and AA groups, but remained unaltered in EPA and Wi rats after a HNaD diet. Interestingly, EPA protected against serum ROS in rats fed the HNaD, whereas AA did not. In kidney lysates, ROS decreased significantly in the EPA group compared with the eSS group, and Nrf-2 expression was consistently higher compared with the AA and eSS groups. Diabetic rats presented focal segmental sclerosis, adherence to Bowman capsule, and mild-to-moderate interstitial fibrosis. EPA and AA treatment prevented kidney damage.ConclusionsAn adequate ω3-to-ω6 ratio prevents SS in diabetic rats by a mechanism that is independent of glucose metabolism but associated with the prevention of renal oxidative stress generation. These data suggest that EPA antioxidant properties may prevent the development of hypertension or kidney damage.Copyright © 2019 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.