• Neuroscience · Apr 2011

    Salicylate-induced peripheral auditory changes and tonotopic reorganization of auditory cortex.

    • D Stolzberg, G-D Chen, B L Allman, and R J Salvi.
    • Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA. djs32@buffalo.edu
    • Neuroscience. 2011 Apr 28; 180: 157-64.

    AbstractThe neuronal mechanism underlying the phantom auditory perception of tinnitus remains elusive at present. For over 25 years, temporary tinnitus following acute salicylate intoxication in rats has been used as a model to understand how a phantom sound can be generated. Behavioral studies have indicated that the pitch of salicylate-induced tinnitus in the rat is approximately 16 kHz. In order to better understand the origin of the tinnitus pitch measurements were made at the levels of auditory input and output; both cochlear and cortical physiological recordings were performed in ketamine/xylazine anesthetized rats. Both compound action potentials and distortion product otoacoustic emission measurements revealed a salicylate-induced band-pass-like cochlear deficit in which the reduction of cochlear input was least at 16 kHz and significantly greater at high and low frequencies. In a separate group of rats, frequency receptive fields of primary auditory cortex neurons were tracked using multichannel microelectrodes before and after systemic salicylate treatment. Tracking frequency receptive fields following salicylate revealed a population of neurons that shifted their frequency of maximum sensitivity (i.e. characteristic frequency) towards the tinnitus frequency region of the tonotopic axis (∼16 kHz). The data presented here supports the hypothesis that salicylate-induced tinnitus results from an expanded cortical representation of the tinnitus pitch determined by an altered profile of input from the cochlea. Moreover, the pliability of cortical frequency receptive fields during salicylate-induced tinnitus is likely due to salicylate's direct action on intracortical inhibitory networks. Such a disproportionate representation of middle frequencies in the auditory cortex following salicylate may result in a finer analysis of signals within this region which may pathologically enhance the functional importance of spurious neuronal activity concentrated at tinnitus frequencies.Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…