Neuroscience
-
Randomized Controlled Trial
The moderating role of the dopamine transporter 1 gene on P50 sensory gating and its modulation by nicotine.
Although schizophrenia has been considered primarily a disease of dopaminergic neurotransmission, the role of dopamine in auditory sensory gating deficits in this disorder and their amelioration by smoking/nicotine is unclear. Hypothesizing that individual differences in striatal dopamine levels may moderate auditory gating and its modulation by nicotine, this preliminary study used the mid-latency (P50) auditory event-related potential (ERP) to examine the single dose (6 mg) effects of nicotine (vs. placebo) gum on sensory gating in 24 healthy nonsmokers varying in the genetic expression of the dopamine transporter (DAT). Consistent with an inverted-U relationship between dopamine level and the drug effects, individuals carrying the 9R (lower gene expression) allele, which is related to greater striatal dopamine levels, tended to evidence increased baseline gating compared to 10R (higher gene expression) allele carriers and showed a reduction in gating with acute nicotine. The present results may help to understand the link between excessive smoking and sensory gating deficits in schizophrenia and to explain the potential functional implications of genetic disposition on nicotinic treatment in schizophrenia.
-
There is a general consensus that prenatal stress alters offspring brain development, however, the details are often inconsistent. Hypothesizing that variation to the level of stress would produce different maternal experiences; this study was designed to examine offspring outcomes following a single prenatal stress paradigm at two different intensities. Pregnant Long Evans rats received mild, high, or no-stress from gestational days 12-16. ⋯ Mild prenatal stress slowed development of sensorimotor abilities and decreased locomotion, whereas high prenatal stress also slowed development of sensorimotor learning but increased locomotion. Finally, mild prenatal stress increased global DNA methylation levels in the frontal cortex and hippocampus whereas high prenatal stress was associated with a dramatic decrease. The data from this study provide evidence to support a dose-dependent effect of prenatal stress on multiple aspects of brain development, potentially contributing to long-term outcomes.
-
Clinical studies show an evident antidepressive effect of physical exercise and animal research corroborate such evidence. However, the neurobiological mechanisms underlying the antidepressive effect of exercise are not completely understood. Notwithstanding, it is known that exercise increases brain-derived neurotrophic factor (BDNF) expression in the hippocampus similarly to antidepressant drugs. ⋯ Voluntary physical activity, but not locked wheel exposure, induced a robust increase in hippocampal mature BDNF protein levels, as well as in p11 and tPA mRNA expression; and also promoted antidepressive effects and improved learning, when compared with sedentary mice. On the other hand, there were no significant differences between any groups in the expression of precursor or truncated isoforms of BDNF. Our data suggest that the antidepressive effect of the physical exercise may depend, at least in part, on changes in BDNF post-translational processing.
-
Alcohol exposure in utero is a common cause of mental retardation, but the targets and mechanisms of action are poorly understood. Several lines of data point toward alterations in cortical connectivity, suggesting that axon guidance may be vulnerable to alcohol exposure. To test this, we asked whether ethanol directly affects cortical axonal growth cone responses to guidance cues. ⋯ The effects of ethanol on axon extension are, by contrast, quite modest. Quantitative assessments of the effects of ethanol on the surface distribution of L1CAM in growth cones suggest that L1CAM homophilic interactions may be particularly relevant for retaining growth cone responsiveness following ethanol exposure. Together, our findings indicate that ethanol can directly and generally alter growth cone responses to guidance cues, that a substrate of L1CAM effectively antagonizes this effect, and that cortical axonal growth cone vulnerability to ethanol may be predicted in part based on the environment through which they are extending.
-
The neuronal mechanism underlying the phantom auditory perception of tinnitus remains elusive at present. For over 25 years, temporary tinnitus following acute salicylate intoxication in rats has been used as a model to understand how a phantom sound can be generated. Behavioral studies have indicated that the pitch of salicylate-induced tinnitus in the rat is approximately 16 kHz. ⋯ The data presented here supports the hypothesis that salicylate-induced tinnitus results from an expanded cortical representation of the tinnitus pitch determined by an altered profile of input from the cochlea. Moreover, the pliability of cortical frequency receptive fields during salicylate-induced tinnitus is likely due to salicylate's direct action on intracortical inhibitory networks. Such a disproportionate representation of middle frequencies in the auditory cortex following salicylate may result in a finer analysis of signals within this region which may pathologically enhance the functional importance of spurious neuronal activity concentrated at tinnitus frequencies.