Neuroscience
-
Glutamate transporter-1 (GLT-1) is responsible for the largest proportion of glutamate transport in the brain and the density of GLT-1 molecules inserted in the plasma membrane is highest in regions of high demand. Previous electron microscopic studies in the hippocampus and cerebellum have shown that GLT-1 is concentrated both in the vicinity of and at considerable distance from the synaptic cleft [Chaudry et al., Neuron 15 (1995) 711-721], but little is known about its distribution in the neocortex. We therefore studied the spatial relationships between elements expressing the presynaptic marker synaptophysin and those containing GLT-1 in the rat cerebral cortex using confocal microscopy. ⋯ In sections double-labeled for GLT-1 and the vesicular GABA transporter, codistribution analysis revealed that 27% of pixels detecting GLT-1 overlapped with those revealing the vesicular GABA transporter. The remarkable 'synaptic' localization of GLT-1 provides anatomical support for the hypothesis that in the cerebral cortex GLT-1 contributes to shaping fast, point-to-point, excitatory synaptic transmission. Moreover, the considerable fraction of GLT-1 immunoreactivity localized at sites distant from axon terminals supports the notion that glutamate spillout occurs also in the intact brain and suggests that 'extrasynaptic' GLT-1 regulates the diffusion of glutamate escaped from the cleft.
-
Recent evidence indicates that stimulation of postsynaptic 5-HT(1A) receptors abates excitotoxic neuronal death. Here we investigated whether oral post-lesion administration of the 5-HT(1A) receptor agonist (-)-(R)-2-[4-[[(3,4-dihydro-2H-1-benzopyran-2-yl)methyl]amino]butyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide monohydrochloride (Repinotan HCl) attenuates N-methyl-D-aspartate (NMDA) excitotoxicity (60 nmol/microl) in the rat magnocellular nucleus basalis. Repinotan HCl (1 mg/kg) was administered from day 1, 2, 3, or 6 post-surgery twice daily for five consecutive days. ⋯ Whereas the neuroprotective profile of Repinotan HCl was superior to that of 8-OH-DPAT, oral administration of both 5-HT(1A) receptor agonists yielded largely equivalent behavioral recovery after NMDA infusion in the magnocellular nucleus basalis. In conclusion, the present data indicate the potent neuroprotective action of the 5-HT(1A) receptor agonist Repinotan HCl with a peak efficacy of delayed (2-3 day) post-lesion drug treatment in vivo. Post-lesion treatment with 5-HT(1A) receptor agonists may therefore be of significance in the intervention of neuronal damage associated with acute excitotoxic conditions.
-
The pathophysiology of brain ischemia and reperfusion injury involves perturbation of intraneuronal ion homeostasis. To identify relevant routes of ion flux, rat hippocampal slices were perfused with selective voltage- or ligand-gated ion channel blockers during experimental oxygen-glucose deprivation and subsequent reperfusion. Electron probe X-ray microanalysis was used to quantitate water content and concentrations of Na, K, Ca and other elements in morphological compartments (cytoplasm, mitochondria and nuclei) of individual CA1 pyramidal cell bodies. ⋯ Na+ channel blockade also effectively diminished neuronal ion and water derangement during oxygen-glucose deprivation and reperfusion. Prevention of elevated Nai+ levels is likely to provide neuroprotection by decreasing presynaptic glutamate release and by improving cellular osmoregulation, adenosine triphosphate utilization and Ca2+ clearance. Thus, we suggest that voltage-gated tetrodotoxin-sensitive Na+ channels and glutamate-gated ionotropic NMDA or AMPA receptors are important routes of ion flux during nerve cell injury induced by oxygen-glucose deprivation/reperfusion.
-
We examined the effects of systemic administration of a GABA(B) receptor agonist, baclofen, or antagonist, phaclofen, on the expression of c-Fos protein induced 3h after electrical stimulation of the trigeminal ganglion at low (0.1 mA) or high intensities (1.0 mA) in the urethane-anesthetized rat. In saline-treated rats, 10 min stimulation of the trigeminal ganglion induced c-Fos-immunopositive neurons throughout the full extent of the ipsilateral superficial layers of the trigeminal nucleus caudalis, and dorsal or dorsomedial part of the nuclei rostral to obex (trigeminal nucleus principalis, dorsomedial nucleus of trigeminal nucleus oralis and dorsomedial nucleus of trigeminal nucleus interpolaris). Animals stimulated at 1.0 mA induced a significantly higher number of labeled neurons in all the trigeminal sensory nuclei than animals stimulated at 0.1 mA. ⋯ These results indicate that the expression of c-Fos in the trigeminal sensory nucleus is differentially regulated through GABAB receptors in a manner that is dependent on the nucleus and the type of primary afferents that are activated by different stimulus intensities. Systemic administration of baclofen could inhibit both nociceptive and non-nociceptive sensory activity in the trigeminal sensory nucleus. Systemic administration of phaclofen could enhance nociceptive sensory activity but not non-nociceptive activity.
-
We report a novel gene transfer system using electroporation. We used this technique to introduce a marker gene plasmid containing enhanced green fluorescent protein into mouse brains at embryonic day 12-17 without removing the embryos from the uterus. The embryos were allowed to continue to develop in utero, and more than 80% were born normally expressing the exogenous gene. ⋯ By contrast, when elongation factor 1alpha promoter was used, prominent fluorescence allowed visualization of the entire mature neurons as well. The labeled neurons were observed to send axons to the contralateral cortex where they arborized extensively. Thus, this system is much easier and more efficient than virus-mediated gene transfer, and is useful for gain-of-function analysis of neural cell fate determination, migration, positioning and axon path-finding in mouse embryos.