Neuroscience
-
In vitro ischemic preconditioning induced by subjecting rat cortical cultures to nonlethal oxygen-glucose deprivation protects against a subsequent exposure to otherwise lethal oxygen-glucose deprivation. We provide evidence that attenuation of the postsynaptic N-methyl-D-aspartate (NMDA) receptor- and Ca(2+)-dependent neurotoxicity underlies oxygen-glucose deprivation tolerance. It is demonstrated that extended tolerance to otherwise lethal NMDA or oxygen-glucose deprivation can be induced by either of their sublethal forms of preconditioning. ⋯ Formation of microtubule-associated protein-2-labeled dendritic varicosities is also attenuated in preconditioned cultures within 1 h of lethal oxygen-glucose deprivation or NMDA application. Intracellular Ca(2+) levels, measured using the high- or low-affinity dyes Fluo-4 (K(d) approximately equal 345 nM) or Fluo-4FF (K(d) approximately equal 9.7 microM) respectively, are markedly attenuated during lethal oxygen-glucose deprivation in preconditioned cultures. Collectively, the results suggest the attenuation of the postsynaptic NMDA-mediated component of otherwise lethal oxygen-glucose deprivation through the suppression of Ca(2+)-dependent neurotoxic signaling, a mechanism that is initially induced by transient nonlethal activation of this receptor during ischemic preconditioning.
-
The clinical use of the antineoplastic agent paclitaxel (Taxol) is significantly limited in its effectiveness by a dose-related painful peripheral neuropathy. To evaluate underlying mechanisms, we developed a model of Taxol-induced painful peripheral neuropathy in the rat and determined the involvement of two second messengers that contribute to enhanced nociception in other models of inflammatory and neuropathic pain, protein kinase Cepsilon and protein kinase A. Taxol administered acutely, or chronically over 12 days, produced a decrease in mechanical nociceptive threshold. ⋯ Mechanical allodynia and thermal hyperalgesia were also present in Taxol-treated rats. Hyperalgesia, produced by both acute and chronic Taxol, was attenuated by intradermal injection of selective second messenger antagonists for protein kinase Cepsilon and protein kinase A. These findings provide insight into the mechanism of Taxol-induced painful peripheral neuropathy that may help control side effects of chemotherapy and improve its clinical efficacy.
-
Psychoactive effects of cannabinoids are thought to be mediated, at least in part, by suppression of both glutamate and GABA release via CB1 cannabinoid receptor. Two types of cannabinoid receptor (CB1 and CB2) have been cloned so far. The CB1 receptors are abundantly expressed in the nervous system, whereas CB2 receptors are limited to lymphoid organs (Matsuda et al., 1990; Munro et al., 1993). ⋯ Here we examined cannabinoid actions on both glutamatergic and GABAergic synaptic transmission in the hippocampus of wild type (CB1+/+) and CB1 receptor knockout mice (CB1-/-). The synthetic cannabinoid agonist WIN55,212-2 reduced the amplitudes of excitatory postsynaptic currents in both wild type and CB1-/- mice, while inhibitory postsynaptic currents were decreased only in wild type mice, but not in CB1-/- animals. Our findings are consistent with a CB1 cannabinoid receptor-dependent modulation of GABAergic postsynaptic currents, but a novel cannabinoid-sensitive receptor must be responsible for the inhibition of glutamatergic neurotransmission.
-
Formalin injected subcutaneously into the paw is a widely used model of pain. This procedure evokes a short-lasting period of flinching (phase 1) and a long-lasting period of intense flinching (phase 2) following a very short period of quiescence. Phase 2 has been extensively used to support the involvement of central (spinal cord) sensitization in inflammatory hyperalgesia. ⋯ Pretreatment of the paws with a mast cell stabilizer, sodium cromoglycate, significantly reduced the second phase of the formalin injection model. From these results we suggest that phases 1 and 2 of the formalin test are dependent upon the ongoing afferent input. Furthermore, while histamine H1 participates in both phases, 5-hydroxytryptamine(4/3) participates in phase 1 and 5-hydroxytryptamine(1A) in phase 2.
-
The hypocretins (orexins) are a newly identified peptide family comprised of two peptides, hypocretin-1 and hypocretin-2. Recent observations suggest an involvement of these peptides in the regulation of behavioral state. For example, these peptides are found in a variety of brain regions associated with the regulation of forebrain neuronal and behavioral activity states. ⋯ Therefore, additional studies examined the sleep-wake effects of bilateral hypocretin-1 infusions into these basal forebrain structures. Robust increases in waking were observed following infusions into, but not outside, the medial septal area, the medial preoptic area and the substantia innominata. These results indicate a potentially prominent role of hypocretins in sleep-wake regulation via actions within certain basal forebrain structures and are consistent with studies indicating a prominent role of hypocretins in sleep/arousal disorders.