Neuroscience
-
The expression of interleukin-1beta and tumor necrosis factor has previously been shown to be up-regulated in the spinal cord of several rat mononeuropathy models. This present study was undertaken to determine whether blocking the action of central interleukin-1beta and tumor necrosis factor attenuates mechanical allodynia in a gender-specific manner in a rodent L5 spinal nerve transection model of neuropathic pain, and whether this inhibition occurs via down-regulation of the central cytokine cascade or blockade of glial activation. Interleukin-1 receptor antagonist or soluble tumor necrosis factor receptor was administered intrathecally via lumbar puncture to male Holtzman rats in a preventative pain strategy, in which therapy was initiated 1h prior to surgery. ⋯ At days 3 and 7 post-transection, animals receiving daily interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibited significantly less interleukin-6, but not interleukin-1beta, in the L5 spinal cord compared to vehicle-treated animals. In an existing pain paradigm, in which treatment was initiated on day 7 post-transection, interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor attenuated mechanical allodynia (P<0.05) in male rats. These findings further support a role for central interleukin-1beta and tumor necrosis factor in the development and maintenance of neuropathic pain through induction of a proinflammatory cytokine cascade.
-
Cholinergic neurons of the basal forebrain form one of the neuron populations that are susceptible to excitotoxic injury. Whereas neuropharmacological studies have aimed at rescuing cholinergic neurons from acute excitotoxic attacks, the short-term temporal profile of excitotoxic damage to cholinergic nerve cells remains largely elusive. The effects of N-methyl-D-aspartate (NMDA) infusion on cytochemical markers of cholinergic neurons in rat magnocellular nucleus basalis were therefore determined 4, 24 and 48 h post-lesion. ⋯ Carbocyanine 3-192IgG labelling in the ipsilateral basal forebrain exceeded that of the contralateral hemisphere at all time points investigated and progressively declined in the damaged magnocellular nucleus basalis up to 48 h after NMDA infusion. The present study indicates that excitotoxic lesion-induced alteration of cholinergic neuronal markers is a rapid and gradual process reaching its maximum 24 h post-surgery. Furthermore, in vivo labelling of cholinergic neurons may be applied to indicate neuronal survival under pathological conditions, and enable to follow their degeneration process under a variety of experimental conditions.
-
Internalization of spinal cord neurokinin-1 receptors following noxious stimulation provides a reliable measure of tachykinin signaling. In the present study, we examined the contribution of GABAergic mechanisms to the control of nociceptor processing involving tachykinins. Spinal administration of the GABA(B) receptor agonist R(+)-baclofen in the rat, at antinociceptive doses, significantly reduced the magnitude of neurokinin-1 receptor internalization in neurons of lamina I in response to acute noxious mechanical or thermal stimulation. ⋯ We conclude that baclofen acts at presynaptic sites to reduce transmitter release from small-diameter nociceptive afferents. Presynaptic actions on non-tachykinin-containing nociceptors could similarly account for the reduction by baclofen of noxious stimulus-induced Fos expression in neurokinin-1 receptor-negative neurons. However, the inhibition of Fos expression induced by exogenous substance P indicates that actions at sites postsynaptic to tachykinin- and/or non-tachykinin-containing primary afferent terminals must also contribute to the antinociceptive actions of GABA(B) receptor agonists.
-
Most functional imaging studies of memory retrieval investigate memory for standardized laboratory stimuli. However, naturally acquired autobiographical memories differ from memories of standardized stimuli in important ways. Neuroimaging studies of natural memories may reveal distinctive patterns of brain activation and may have particular value in assessing clinical disorders of memory. ⋯ The posterior cingulate cortex has strong reciprocal connections with entorhinal and parahippocampal cortices. Studies of early Alzheimer's disease, temporal lobectomy, and hypoxic amnesia show that hypometabolism of the posterior cingulate cortex is an early and prominent indicator of pathology in these patients. Our findings suggest that autobiographical memory retrieval tasks could be used to probe the functional status of the posterior cingulate cortex in patients with early Alzheimer's disease or at risk for that condition.
-
Estrogens can influence the survival, plasticity and function of many adult neurons. Many of these effects, such as neurite outgrowth and increased dendritic spine density, are mediated by changes in neuronal cytoskeletal architecture. Since neurofilament proteins play a key role in the maintenance and remodeling of the neuronal cytoskeleton, we postulated that changes in neurofilament light chain mRNA may parallel some of the alterations in neuronal architecture which follow bilateral ovariectomy. ⋯ We propose that atrophic changes involving basal forebrain projection fibers are followed by compensatory axonal growth by other 'intact' basal forebrain neurons. Increased neurofilament light chain mRNA expression and somatic hypertrophy in medial septal neurons may both be reflective of the need to sustain an axonal network which is larger and more complex. In contrast, increased neurofilament light chain mRNA expression observed in basal forebrain targets following long-term ovariectomy may be reflective of compensatory changes taking place in local neurons.