Neuroscience
-
Ultrasound sensitivity to slow blood flow motion gained two orders of magnitude in the last decade thanks to the advent of ultrafast ultrasound imaging at thousands of frames per second. In neuroscience, this access to small cerebral vessels flow led to the introduction of ultrasound as a new and full-fledged neuroimaging modality. ⋯ A large and fast-growing number of studies in a wide variety of small to large animal models have demonstrated its potential for neuroscience research. Beyond preclinical imaging, first proof of concept applications in humans are promising and proved a clear clinical interest in particular in human neonates, per-operative surgery, or even for the development of non-invasive brain machine interfaces.
-
Ultrasound imaging is one of the most widely used modalities in clinical practice, revealing human prenatal development but also arterial function in the adult brain. Ultrasound waves travel deep within soft biological tissues and provide information about the motion and mechanical properties of internal organs. A drawback of ultrasound imaging is its limited ability to detect molecular targets due to a lack of cell-type specific acoustic contrast. ⋯ This molecular ultrasound imaging approach has proved to be successful but is restricted to the vascular space. Here, we introduce the nascent field of biomolecular ultrasound imaging, a molecular imaging approach that relies on genetically encoded acoustic biomolecules to interface ultrasound waves with cellular processes. We review ultrasound imaging applications bridging wave physics and chemical engineering with potential for deep brain imaging.
-
The ability to detect a molecular target in the central nervous system non-invasively and at high spatial resolution using magnetic resonance imaging (MRI) has attracted the interest of researchers for several decades. Yet, molecular MRI studies remain restricted to the preclinical stage and the path to clinical translation remains unclear. ⋯ In particular, recent studies demonstrated the feasibility of unraveling inflammation in the brain by MRI using MPIO able to bind activated endothelial cells with potential applications in neurovascular, neuroinflammatory and neurodegenerative disorders. In the present review, we present the most striking advances in the field and the remaining challenges that must be overcome before clinical use of molecular MRI of neuroinflammation.
-
Diagnosis of cerebrovascular disease includes vascular neuroimaging techniques such as computed tomography (CT) angiography, magnetic resonance (MR) angiography (with or without use of contrast agents) and catheter digital subtraction angiography (DSA). These techniques provide mostly information about the vessel lumen. ⋯ However, advances in OCT technology including the probe profile, stiffness and unique distal rotation solution, holds the promise for eventual translation of OCT into the clinical arena. As such, it is apropos to review this technology and present the rationale for utilization of OCT in the cerebrovasculature.
-
1H magnetic resonance imaging (MRI) has established itself as a key diagnostic technique, affording the visualization of brain anatomy, blood flow, activity and connectivity. The detection of other atoms (e.g. 19F, 23Na, 31P), so called hetero-nuclear MRI and spectroscopy (MRS), provides investigative avenues that complement and extend the richness of information that can be gained from 1H MRI. Especially 19F MRI is increasingly emerging as a multi-nuclear (1H/19F) technique that can be exploited to visualize cell migration and trafficking. ⋯ Further methodological advances that accelerate signal acquisition (e.g. compressed sensing, cryogenic coils) are required to expand the applications of 19F MR imaging to, for instance, determine the regional pharmacokinetics of novel fluorine-based drugs. Improvements in 19F signal detection and localization, combined with the development of novel sensitive probes, will increase the utility of these multi-nuclear studies. These advances will provide new insights into cellular and molecular processes involved in neurodegenerative disease, as well as the mode of action of pharmaceutical compounds.