Neuroscience
-
DJ-1 plays a neuroprotective role in cerebral ischemia- reperfusion (I/R) injury and participates in the apoptosis of brain nerve cells, but the underlying mechanism is unclear. We explored the molecular pathways underlying this role using in vivo and in vitro approaches. Middle cerebral artery occlusion- reperfusion (MCAO/R) rat models and oxygen- glucose deprivation- reoxygenation (OGD/R) HAPI cell cultures were used to simulate cerebral ischemia-reperfusion injury. ⋯ In vitro, the Notch1 signaling pathway inhibitor DAPT reversed the neuroprotective effect of ND-13 and promoted apoptosis, weakened the interaction between DJ-1 and Notch1, and decreased the expression of proteins in the Notch1 and Nrf2 pathways. Thus, we found that DJ-1 inhibits apoptosis by regulating the Notch1 signaling pathway and Nrf2 expression in cerebral I/R injury. These results imply that DJ-1 is a potential therapeutic target for cerebral I/R injury.
-
Ischaemic stroke (IS) is characterized by high morbidity, disability and mortality and lacks effective solutions. MiRNA-27a has been implicated in ferroptosis, but evidence that miRNA-27a regulates ferroptosis in ischaemic stroke is lacking. Nrf2 could reduce brain tissue injury in ischaemic stroke and resist ferroptosis. ⋯ The results showed that miRNA‑27a inhibited Nrf2 in a targeted manner, which also exacerbated the extent of ferroptosis. However, the miRNA‑27a antagonist reversed the miR‑27a agonist‑mediated effects. Therefore, the present study indicated that miRNA‑27a may aggravate brain tissue ferroptosis during ischaemic stroke, potentially by inhibiting Nrf2.
-
Review
The beneficial role of SIRT1 in preventive or therapeutic options of Neurodegenerative Diseases.
Sirtuin 1 (SIRT1) is an NAD+ dependent deacetylase that modify the gene expression through histone deacetylation. SIRT1 plays a crucial role in regulating a wide range of physiological processes by adjustment multiple mechanisms through the deacetylation of multiple substrates. ⋯ Its basic pathogenesis is filamentous tangles and amyloid deposits, such as Amyloid-β (Aβ), tau protein, α-synuclein, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). This summarizes introduces the structure and function of SIRT1, and then analyzes the protective effects of SIRT1 on neurological diseases by regulating circadian rhythm, aging, oxidative stress, mitochondrial dysfunction and neuroinflammation related pathways.
-
Intelligence is the ability to recognize and understand objective things, and use knowledge and experience to solve problems. Highly intelligent people show the ability to switch between different thought patterns and shift their mental focus. This suggests a link between intelligence and the dynamic interaction of brain networks. ⋯ High variability in these areas indicates flexible connectivity patterns, which may contribute to cognitive processes such as attention selection. In addition, performance intelligence was related to greater temporal variability in the functional connectivity patterns of the salience network. Thus, this study revealed a close relationship between performance intelligence and high variability in brain networks involved in attentional choice, spatial orientation, and cognitive control.
-
Autoantibodies to neuronal antigens are viewed as potential biomarkers for neurodegenerative diseases. Increasing evidence, however, suggests a dissociation of the neurodegenerative process in the central nervous system and dynamics of neuronal proteins in peripheral circulation with the prevalence of a wide variety of immunoglobulins reactive to neuronal antigens reported also in the blood of healthy subjects, including children. Recently discovered physiological turnover of neurons in enteric nervous system with release of neuronal proteins in peripheral circulation may account for this conundrum and provide a new perspective on molecular biomarkers of neurodegenerative diseases and immunotherapy.