Neuroscience
-
In certain biologically relevant computing scenarios, a neuron "pools" the outputs of multiple independent functional subunits, firing if any one of them crosses threshold. Recent studies suggest that active dendrites could provide the thresholding mechanism, so that both the thresholding and pooling operations could take place within a single neuron. A pooling neuron faces a difficult task, however. ⋯ In a similar vein, we used a compartmental model to study how a neuron's performance at the BSP task is affected by different spine density layouts and other biological variables. We found BSP performance was optimized when dendrites have (1) a decreasing spine density gradient (true for many types of pyramidal neurons); (2) low-to-medium resistance spine necks; (3) strong NMDA currents; (4) fast spiking Na+ channels; and (5) powerful hyperpolarizing inhibition. Our findings provide a normative account that links several neuronal properties within the context of a behaviorally relevant task, and may provide new insights into nature's subtle strategies for optimizing the computing capabilities of neural tissue.
-
There has been increasing interest in the measurement and comparison of activity across compartments of the pyramidal neuron. Dendritic activity can occur both locally, on a single dendritic segment, or globally, involving multiple compartments of the single neuron. ⋯ However, the distinction between local and global activity made by calcium imaging requires careful consideration. In this review we describe local and global activity, discuss the difficulties and caveats of this distinction, and present the evidence of local and global activity in information processing and behavior.
-
Half a century since their discovery by Llinás and colleagues, dendritic spikes have been observed in various neurons in different brain regions, from the neocortex and cerebellum to the basal ganglia. Dendrites exhibit a terrifically diverse but stereotypical repertoire of spikes, sometimes specific to subregions of the dendrite. ⋯ This article aims to survey the full range of dendritic spikes found in excitatory and inhibitory neurons, compare themin vivoversusin vitro, and discuss new studies describing dendritic spikes in the human cortex. We focus on neocortical and hippocampal neurons and present a roadmap to identify and understand the broader role of dendritic spikes in single-cell computation.
-
Much of our understanding of dendritic and synaptic physiology comes from in vitro experimentation, where the afforded mechanical stability and convenience of applying drugs allowed patch-clamping based recording techniques to investigate ion channel distributions, their gating kinetics, and to uncover dendritic integrative and synaptic plasticity rules. However, with current efforts to study these questions in vivo, there is a great need to translate existing knowledge between in vitro and in vivo experimental conditions. ⋯ Here, we argue that under physiological in vivo ionic conditions, dendrites are expected to be more excitable and the threshold for synaptic plasticity induction to be lowered. Consequently, the plasticity rules described in vitro vary significantly from those implemented in vivo.
-
Decades of experimental and theoretical work support a now well-established theory that active dendritic processing contributes to the computational power of individual neurons. This theory is based on the high degree of electrical compartmentalization observed in the dendrites of single neurons in ex vivo preparations. ⋯ In this review, we contextualize these new findings and discuss their impact on the future of the field. Specifically, we consider how highly coordinated, and thus less compartmentalized, activity in soma and dendrites can contribute to cortical computations including nonlinear mixed selectivity, prediction/expectation, multiplexing, and credit assignment.