Neuroscience
-
Cerebral ischemia-reperfusion injury (IRI) is caused by reperfusion following ischemia. Mitophagy is closely related to cerebral IRI. Mitophagy disorder or excess may be harmful and lead to neuronal apoptosis. ⋯ Our research found that knockdown PRDX6 increased the expression of mitophagy-related and apoptosis-related proteins. Knocking down PINK1 relieved mitophagy and apoptosis caused by knocking down PRDX6. In conclusion, knockdown of PRDX6 could aggravate cerebral IRI by enhancing PINK1/PARKIN pathway mediated mitophagy, and this effect could increase neuronal apoptosis.
-
Academic self-concept, which can be defined as one's beliefs about their academic ability, plays an important role in students' future academic achievement. Here, we examined the neuroanatomical substrates underlying academic self-concept in 92 school-aged children (9.90 ± 0.85 years, 41 girls) using voxel-based morphometry of images obtained by structural magnetic resonance imaging. ⋯ Region of interest analyses further showed that regional gray matter volume in the right DLPFC could significantly predict achievement 1 year after assessment. Notably, mediation analyses suggested that regional gray matter volume in the right DLPFC mediated the effect of academic self-concept on students' future academic achievement.
-
Parvalbumin-expressing (PV+) interneurons in the sensory cortex form powerful inhibitory synapses on the perisomatic compartments and axon initial segments of excitatory principal neurons (PNs), and perform diverse computational functions. Impaired PV+ interneuron functions have been reported in neural developmental and degenerative disorders. Expression of the unique marker parvalbumin (PV) is often used as a proxy of PV+ interneuron functions. ⋯ The expression of KV3.1 was correlated with spike frequency adaptation, but not with the expression of GAD67. These results suggest separate transcriptional regulations of PV/GAD67 vs. KV3.1, both of which are modulated by NIHL.
-
Aquaporins (AQPs) play critical physiological roles in water balance in the central nervous system (CNS). Aquaporin-4 (AQP4), the principal aquaporin expressed in the CNS, has been implicated in the processing of sensory and pain transmission. Akt signaling is also involved in pain mediation, such as neuroinflammatory pain and bone cancer pain. ⋯ Furthermore, Akt blockade with MK2206 alleviated NP in the early and late phases after SNL. These results elucidate the mechanisms involved in the roles of Akt/AQP4 signaling in the development and maintenance of NP. AQP4 is likely to be a novel therapeutic target for NP management.
-
Abundant findings including our previous work proved that the NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome exerts a key role in the process of neuroinflammation following blast-induced traumatic brain injury (bTBI). The opening of potassium channels leads to low K+ environment in cells, which appears to be an essential requirement for NLRP3 inflammasome activation. Notably, MaxiK (BK) channel is significant for K+ transport. ⋯ In addition, paxilline could also decrease the level of pro-inflammatory cytokines and the biomarkers of brain injury and alleviate brain edema of bTBI rats. Our findings have revealed that MaxiK channel might be involved in the process of neuroinflammation of bTBI. Paxilline could depress neuro-inflammation response and alleviate brain injury by blocking MaxiK channel and subsequently inhibition of NLRP3 inflammasome activation.