Neuroscience
-
Reconsolidation results in the restabilisation, and thus persistence, of a memory made labile by retrieval, and interfering with this process is thought to enable modification or weakening of the original trace. As such, reconsolidation-blockade has been a focus of research aiming to target the maladaptive memories underlying mental health disorders, including post-traumatic stress disorder and drug addiction. Current first-line therapies are not effective for all patients, and a substantial proportion of those for whom therapies are effective later relapse. ⋯ These include factors such as the age and strength of memory, and can broadly be divided into two categories: intrinsic features of the targeted memory itself, and parameters of the reactivation procedure used. With maladaptive memory characteristics inevitably varying amongst individuals, manipulation of the other limitations imposed by procedural variables have been explored to circumvent the boundary conditions on reconsolidation. Although several apparently discrepant results remain to be reconciled and these limitations yet to be truly defined, many studies have produced successful results which encouragingly demonstrate that boundary conditions may be overcome using various proposed strategies to enable translation of a reconsolidation-based intervention to clinical use.
-
Tauopathies are a group of neurodegenerative diseases among which are many of the most prevalent and with higher incidence worldwide, such as Alzheimer's disease (AD). According to the World Health Organization, this set of diseases will continue to increase their incidence, affecting millions of people by 2050. All of them are characterized by aberrant aggregation of tau protein in neurons and glia that are distributed in different brain regions according to their susceptibility. ⋯ Despite this, it has not been emphasized how the glial inclusions of tau in this cell type directly affect this and many other essential functions, whose alterations have been related to the development of tauopathies. In this way, this review shows how tau inclusions in glia influence the synaptic dysfunctions that result in the cognitive symptoms characteristic of tauopathies. Thus, the mechanisms affected by inclusions in neurons, astrocytes, and oligodendrocytes are unraveled.
-
Tau is a well-known microtubule-associated protein related to its cytoplasmic localization in a neuronal cell. However, tau has been located at the cell nucleus where it could be a nucleic acid-associated protein by its preferential binding to DNA sequences present in the nucleolus and pericentromeric heterochromatin. This less well-known localization of tau could not be trivial, since during aging, an increase in the amount of nuclear tau takes place and it may be related to the described role of tau in the activation of transposons and further aging acceleration.
-
Gut microbiota represents a diverse and dynamic population of microorganisms harbouring the gastrointestinal tract, which influences host health and disease. Bacterial colonization of the gastrointestinal tract begins at birth and changes throughout life, with age being one of the conditioning factors for its vitality. Aging is also a primary risk factor for most neurodegenerative diseases. ⋯ Data from clinical studies as well as the link between microbiome and clinical determinants of AD are particularly emphasized. Further, relationships between gut microbiota and age-dependent epigenetic changes and other neurological disorders are also described. Together, all this evidence suggests that, in some sense, gut microbiota can be seen as an additional hallmark of human aging and neurodegeneration.
-
Review
Macromolecular Structures and Proteins Interacting with the Microtubule Associated Tau Protein.
It is well established that neurodegenerative diseases known as tauopathies are characterized by the presence of filamentous forms of phosphorylated tau protein inside neurons. However, the causal relationship between the initial symptoms of a particular disease and the molecular events affecting tau and leading to the appearance of tangles of filamentous forms of this protein remains unknown. Even the main function (or functions) of tau inside neurons is debatable and controversial. ⋯ I review here some of the most studied interactions of tau with different macromolecules and proteins, which can be classified according to the structural o functional unit within which the interaction works: Microtubule, Nuclear localization and DNA, Synaptic activity, RNA metabolism, Fats transport, Proteostasis, Amyloid Cascade Hypothesis, Mitochondria and Phosphorylation. Although this seems to be a broad spectrum of tau functions, interactome studies of tau reveal hundreds of plausible partners of tau, suggesting that it engages in an extensive network of interconnected regulatory interactions by means of its high capability to interact with all kinds of proteins and complex structures, combined with its vast number of post-translational modifications. I include also some thermodynamic data concerning the interaction of tau with some partners.