Neuroscience
-
Given the importance of understanding the disorders caused by trans fatty acids (TFAs), this study sought to add different concentrations hydrogenated vegetable fat (HVF) to the diet of Drosophila melanogaster during the developmental period and evaluate the effects on neurobehavioral parameters. Longevity, hatching rate, and behavioral functions were assessed, such as negative geotaxis, forced swimming, light/dark, mating, and aggressiveness. ⋯ As for the biochemical parameters, there was a more significant presence of TFA in flies exposed to HVF at all concentrations evaluated and lower 5HT and DA levels. This study shows that HVF during the developmental phase can cause neurological changes and consequently induce behavioral disorders, thereby highlighting the importance of the type of FA offered in the early stages of life.
-
According to the correlated transmitter-receptor based structure of the inferior parietal cortex (IPC), this brain area is divided into three clusters, namely, the caudal, the middle and the rostral. Nevertheless, in associating different cognitive functions to the IPC, previous studies considered this part of the cortex as a whole and thus inconsistent results have been reported. Using multiband echo planar imaging (EPI), we investigated the connectivity profile of the middle IPC while forty-five participants performed a task requiring cognitive control. ⋯ At the same time, this cortical area showed negative functional connectivity with both the precuneus cortex, which is resting- state related, and brain areas related to general cognitive functions. That is, the functions of the middle IPC are not accommodated by the traditional categorization of different brain areas i.e. resting state-related or task-related networks and this advanced our hypothesis about modulating cortical areas. Such brain areas are characterized by their negative functional connectivity with parts of the cortex involved in task performance, proportional to the difficulty of the task; yet, their functional associations are inconsistent with the resting state-related cortical areas.
-
The circadian clock can coordinate, regulate and predict physiology and behavior in response to the standard light-dark (LD: 12 h light and 12 h dark) cycle. If we alter the LD cycle by exposing mice to constant darkness (DD: 00 h light and 24 h dark), it can perturb behavior, the brain, and associated physiological parameters. The length of DD exposure and the sex of experimental animals are crucial variables that could alter the impact of DD on the brain, behavior, and physiology, which have not yet been explored. ⋯ Three weeks of restoration was adequate to establish homeostasis in both sexes. To the best of our knowledge, this study is the first of its kind to look at how DD exposure impacts physiology and behavior as a function of sex- and time. These findings would have translational value and may help in establishing sex-specific interventions for addressing DD-related psychological issues.
-
Randomized Controlled Trial
Resting state dynamics in people with varying degrees of anxiety and mindfulness: A nonlinear and nonstationary perspective.
Anxiety and mindfulness are two inversely linked traits shown to be involved in various physiological domains. The current study used resting state electroencephalography (EEG) to explore differences between people with low mindfulness-high anxiety (LMHA) (n = 29) and high mindfulness-low anxiety (HMLA) (n = 27). The resting EEG was collected for a total of 6 min, with a randomized sequence of eyes closed and eyes opened conditions. ⋯ It led us to conclude that it might be anxiety, not mindfulness, which might have contributed to higher electrophysiological arousal. Additionally, a higher δ-β and δ-γ CFC in LMHA suggested greater local-global neural integration, consequently a greater functional association between cortex and limbic system than in the HMLA group. The present cross-sectional study may guide future longitudinal studies on anxiety aiming with interventions such as mindfulness to characterize the individuals based on their resting state physiology.
-
Abnormal N-methyl-D-aspartate receptor (NMDAr) function has been linked to oscillopathies, psychosis, and cognitive dysfunction in schizophrenia (SCZ). Here, we investigate the role of NMDAr hypofunction in pathological oscillations and behavior. We implanted mice with tetrodes in the dorsal/intermediate hippocampus and medial prefrontal cortex (mPFC), administered the NMDAr antagonist MK-801, and recorded oscillations during spontaneous exploration in an open field and in the y-maze spatial working memory test. ⋯ In the mPFC, MK-801 increased the power of theta and gamma, generated high-frequency oscillations (HFO 155-185 Hz), and disrupted theta/gamma coupling. Moreover, the performance of mice in the spatial working memory version of the y-maze was strongly correlated with CA1-PFC theta/gamma co-modulation. Thus, theta/gamma mediated by NMDAr function might explain several of SCZ's cognitive symptoms and might be crucial to explaining hippocampal-PFC interaction.