Neuroscience
-
In pop music, drum and bass components are crucial for generating the desire to move one's body, primarily due to their role in delivering salient metrical cues. This study explored how the presence of drum and bass influences neural responses to unfamiliar pop songs. Using AI-based algorithms, we isolated the drum and bass components from the musical excerpts, creating two additional versions: one that included only the drum and bass (excluding vocals and other instruments), and another that excluded the drum and bass (consisting solely of vocals and other instruments). ⋯ Analysis of fMRI data indicated that the removal of drum and bass led to increased activity in the auditory dorsal pathway, suggesting that the absence of these metrical cues demands greater cognitive effort to process the beats. In contrast, the version featuring only drum and bass elicited stronger activation in frontal regions associated with mirror properties, including the right ventral premotor cortex (extending into the inferior frontal gyrus) and left dorsolateral prefrontal cortex, compared to the original version. Overall, this study contributed insights into the foundational role of drum and bass in imparting metrical salience to pop songs, enriching our understanding of listeners' sensorimotor processing of musical genres that prominently feature these two elements.
-
We aimed to investigate the relationship between the volume reduction in hippocampal (HP) subregions and cognitive impairment in patients with cerebral small vessel disease (CSVD). Clinical, cognitive, and magnetic resonance imaging data were obtained for 315 participants. The CSVD group included 146 participants with a total CSVD score of 1-4. 169 participants with a total CSVD score of zero were used as control group (CSVD-0). ⋯ Regression analysis showed that fimbria was the most impacted HP subregion by CSVD. And mediation analysis revealed fimbria volume was a mediator variable between total CSVD score and MoCA/SCWT score. These results suggest that the volumes of HP subregions, especially the fimbria, may be effective potential biomarkers for early detecting cognitive impairment in CSVD.
-
Detecting intentions and estimating movement trajectories in a human-machine interface (HMI) using electromyogram (EMG) signals is particularly challenging, especially for individuals with movement impairments. Therefore, incorporating additional information from other biological sources, potential discrete information in the movement, and the EMG signal can be practical. This study combined EMG and target information to enhance estimation performance during reaching movements. ⋯ Even under conditions of higher fatigue, the proposed structure provided better performance than the EMG decoder. Including additional information about the recognized reaching target in the trajectory model improved the estimation of the reaching profile. Consequently, this study's findings suggest that bimodal decoders are highly beneficial for enhancing assistive robotic devices and prostheses, especially for real-time upper limb rehabilitation.
-
Cerebral ischemia and subsequent reperfusion damage are prevalent in clinical practice, linked to numerous neurodegenerative diseases. Cerebral ischemia deprives brain tissue of essential oxygen and nutrients, disrupting energy metabolism and causing cellular dysfunction. Although reperfusion theoretically aids recovery, it instead initiates complex injury responses such as oxidative stress, apoptosis, and inflammation, worsening brain damage. ⋯ This process facilitates metabolic reprogramming characterized by the promotion of oxidative phosphorylation (OXPHOS) and the pentose phosphate pathway (PPP), alongside a reduction in glycolysis. Such reprogramming reduces harmful metabolites, mitigating apoptosis and oxidative stress, and is a key factor in alleviating acute ischemic hypoxia-induced brain damage. These findings introduce a novel therapeutic approach for ischemic brain reperfusion injury, underscoring the crucial role of ATP production and metabolic regulation in neuroprotection.
-
The disturbances in neurotrophic support are thought to be one of the main causes of depression, which depend not only on the neurotrophins themselves but also on the molecules regulating their synthesis and effector functions. One such molecule is cAMP responsive element binding protein (CREB), which role in depression and antidepressant drugs mechanism of action has been extensively studied. However, CREB's effects vary depending on brain structure, necessitating specific transgenic models for studying its function. ⋯ However, both male and female mice lacking CREB and CREM displayed alterations in neurotrophin-3 (NTF3) expression or protein levels, modulated by desipramine. These findings suggest NTF3 is connected with inhibited response to acute and probably chronic desipramine administration in Creb1DbhCreCrem-/- mice, although in w/t chronic desipramine had no effect on NTF3. Nevertheless, our findings give insight into the role of non-BDNF neurotrophins in the mechanism of antidepressant drugs.