Neuroscience
-
Depression is a complex disorder with multiple contributing factors, and chronic stress has previously been recognized as a major causative factor, while gut microbes have also been found to be involved in depression recently. However, gene expression in depression models with different etiologies is unclear. Here, we compared the transcriptomes of the striatum in chronic social defeat stress (CSDS) model of C57BL/6J male mice and fecal microbiota transplant (FMT) model of Kumming male mice. ⋯ Further, the alternative splicing events of CSDS are more than FMT. Our results suggested models of depression induced by different etiologies differ significantly in gene expression and biological function. Our study also suggested us to pay attention to the characteristics of models of depression of different etiologies and provided a more comprehensive understanding of the heterogeneity of depression.
-
The study aimed to validate the protective effect of neuroglobin (Ngb) in a cell model of Parkinson's disease (PD) and explore its therapeutic potential. Lentivirus-Ngb (LvNgb) and siRNA-Ngb (siNgb) were used to achieve Ngb overexpression and knockdown, respectively, in a sporadic PD cell model. Apoptosis was evaluated by flow cytometry-based Annexin V/propidium iodide assays. ⋯ Furthermore, Ngb overexpression restored MMP and NAD+/NADH ratios and alleviated ROS-mediated oxidative stress in MN9D cells. Finally, Co-IP confirmed the interaction between Ngb and NDUFA10 in MN9D cells. In conclusion, Ngb protects MN9D cells against apoptosis by interacting with Complex I subunit NDUFA10, rescuing its activity and inhibiting the mitochondrial pathway of apoptosis in the MPP+-mediated PD model.
-
Traumatic brain injury is a prevalent condition that affects millions worldwide with no clear understanding or effective therapeutic management available. Military soldiers have a high risk of exposure to blast-induced traumatic brain injury (bTBI). Furthermore, alcohol drinking is common in this population, and studies have shown that post-TBI alcohol exposure can result in memory loss. ⋯ However, extended alcohol drinking for up to three weeks post mbTBI impaired long-term memory and was accompanied by intensified oxidative stress in brain regions associated with memory and anxiety. These findings, as well as those from previous in vitro TBI/alcohol studies, suggest a pathological synergy of physical force and post-impact alcohol exposure. This knowledge could potentially aid in establishing guidelines for TBI victims to avoid further injury to their brains as well as to help maximize their recovery following TBI.
-
Numerous in vitro and in vivo experimental studies indicate that neuropeptide Y Y2 receptors (Y2R) are potential targets for neuroprotective therapy, including neuroprotection against ischemic stroke in healthy rats. Since stroke in humans is typically associated with comorbidities and long-term hypertension is the most common comorbidity leading to stroke, this study aimed to assess the neuroprotective potential of the Y2R agonist NPY13-36 in the rats with essential hypertension (SHR) subjected to 90 min middle cerebral artery suture occlusion with subsequent reperfusion (MCAOR). The cerebrocortical microflow in the ischemic focus and penumbra was continuously monitored with a Laser-Doppler flowmeter. ⋯ Our results demonstrate that administration of NPY13-36 reduces the size of the infarct, improves motor functions, and restores microcirculatory response to the blockade of nitric oxide synthase when administered during reperfusion. The novelty of this study is a finding of the vasoprotective effect of NPY13-36 in brain ischemia/reperfusion. Moreover, this study provides evidence of the beneficial effects of NPY13-36 in animals with essential hypertension and indicates that Y2R ligands may be promising candidates for treating the ischemic brain in the case of this disease.
-
Cerebral ischemia-reperfusion injury is frequently associated with neuroinflammation. The modulation of microglial polarization presents a promising approach for addressing cerebral ischemia-reperfusion injury. While electroacupuncture preconditioning has demonstrated efficacy in the management of ischemic stroke, the underlying therapeutic mechanisms remain inadequately understood. ⋯ After treatment, the number of M1-type microglia decreased, while the number of M2-type microglia increased. These results suggest that EA preconditioning may alleviate neurological deficits and neuronal apoptosis caused by cerebral I/R injury, while maintaining the integrity of the blood-brain barrier and promoting microglial polarization through the TLR4/NF-κB/TXNIP/NLRP3 signaling pathway. Our findings establish a new molecular mechanism and theoretical foundation for electroacupuncture therapy of ischemic stroke.