Neuromodulation : journal of the International Neuromodulation Society
-
High-frequency gastric electrical stimulation (GES) has emerged as a therapy for gastroparesis, but the mechanism(s) of action remain unclear. There is a need to refine stimulation protocols for clinical benefit, but a lack of accurate techniques for assessing mechanisms in clinical trials, such as slow wave modulation, has hindered progress. We thereby aimed to assess acute slow wave responses to GES in gastroparesis patients using high-resolution (HR) (multi-electrode) mapping, across a range of stimulation doses achievable by the Enterra stimulation device (Medtronic Inc., MN, USA). ⋯ High-frequency GES protocols achievable from a current commercial device did not acutely modulate slow wave activity or dysrhythmias. This study advances clinical methods for identifying and assessing therapeutic GES parameters, and can be applied in future studies on higher-energy protocols and devices.
-
Neuromodulation, including cavernous nerve stimulation, gastric electrical stimulation, deep brain stimulation, and vagus nerve stimulation, has been used with success in treating several functional disease conditions. The FDA has approved the use of neuromodulation for a few indications. We discuss in our review article the evidence of using neuromodulation for treating some important disorders involving the autonomic nervous system that are not currently FDA approved. ⋯ This review article shows preliminary support based on clinical studies that neuromodulation can be of benefit for patients with important autonomic nervous system disease conditions that are not currently approved by the FDA. All of these investigational uses are encouraging; further studies are necessary and warranted for all indications discussed in this review before achieving FDA approval.
-
Case Reports
Lead Angle Matters: Side Effects of Deep Brain Stimulation Improved With Adjustment of Lead Angle.
Targeting the subthalamic nucleus (STN) for deep brain stimulation (DBS) using standard stereotactic coordinates in conjunction with high-resolution magnetic resonance imaging (MRI) generally results in effective symptomatic relief for the cardinal motor features of Parkinson's disease (PD). The angle of approach, however, influences the resultant field of stimulation and can lead to undesired side effects. ⋯ Lead angle can impact DBS outcome and should be taken into consideration.
-
Case Reports
NonInfectious Peri-Electrode Edema and Contrast Enhancement Following Deep Brain Stimulation Surgery.
Dramatic radiographic abnormalities seen after electrode placement (DRAAEP) in deep brain stimulation (DBS) surgery is rare and it has not been associated with infection or hemorrhage. It has consisted of peri-electrode low-attenuation signals on CT scans and extensive T2-hyperintense signals without associated contrast enhancement (CE) on MRI scans. ⋯ To our knowledge, this is the first reported case of DRAAEP with positive gadolinium enhancement. Despite the extensive contrast enhancement, these DRAAEP appear to remain benign transient events that, in the absence of clinical signs of infection or neurologic decline, may warrant no further aggressive intervention such as hardware removal.