Neuromodulation : journal of the International Neuromodulation Society
-
Review Case Reports
Direct Peripheral Nerve Stimulation for the Treatment of Complex Regional Pain Syndrome: A 30-Year Review.
Complex regional pain syndrome (CRPS), formerly known as reflex sympathetic dystrophy (RSD), is a difficult to treat condition characterized by debilitating pain and limitations in functional ability. Neuromodulation, in the form of spinal cord stimulation (SCS) and peripheral nerve stimulation (PNS), have been traditionally used as a treatment for CRPS with variable success. ⋯ We can conclude that PNS is a useful modality to improve function and reduce long-term pain in selected patients suffering from CRPS type I and type II.
-
To systematically identify and summarize the effectiveness and the parameters of electrical stimulation (ES) for the preservation of visual function in major retinal degeneration and optic neuropathy. ⋯ ES treatment has promising therapeutic effects on RP and optic neuropathy. More large-scale RCT studies should be conducted to elucidate the potential of ES, especially on AMD, RAO, and glaucoma. A comparison of the effects by different ES methods in the same disease populations is still lacking. Parameters of the electric current and sensitive detection method should be optimized for the evaluation of ES treatment effects in future studies.
-
To systematically identify and summarize the effectiveness and the parameters of electrical stimulation (ES) for the preservation of visual function in major retinal degeneration and optic neuropathy. ⋯ ES treatment has promising therapeutic effects on RP and optic neuropathy. More large-scale RCT studies should be conducted to elucidate the potential of ES, especially on AMD, RAO, and glaucoma. A comparison of the effects by different ES methods in the same disease populations is still lacking. Parameters of the electric current and sensitive detection method should be optimized for the evaluation of ES treatment effects in future studies.
-
The corticospinal volley produced by application of transcranial magnetic stimulation (TMS) over primary motor cortex consists of a number of waves generated by trans-synaptic input from interneuronal circuits. These indirect (I)-waves mediate the sensitivity of TMS to cortical plasticity and intracortical excitability and can be assessed by altering the direction of cortical current induced by TMS. While this methodological approach has been conventionally viewed as preferentially recruiting early or late I-wave inputs from a given populations of neurons, growing evidence suggests recruitment of different neuronal populations, and this would strongly influence interpretation and application of these measures. The aim of this review is therefore to consider the physiological, functional, and clinical evidence for the independence of the neuronal circuits activated by different current directions. ⋯ Further research providing greater characterization of the I-wave circuits activated with different current directions is required. This will facilitate the development of interventions that are able to modulate specific intracortical circuits, which will be an important application of TMS.
-
Review Meta Analysis
Transcranial Magnetic Stimulation for the Treatment of Concussion: A Systematic Review.
Post-concussive symptoms (PCSs) are common, disabling, and challenging to manage. Evolving models of concussion pathophysiology suggest evidence of brain network dysfunction that may be amenable to neuromodulation. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a potential novel treatment option for PCSs. ⋯ rTMS for the treatment of concussion/mTBI shows promising preliminary results for post-concussive depression and headache, symptoms that otherwise have limited effective treatment options. More studies with larger sample sizes are needed to further establish potential efficacy.