Neuromodulation : journal of the International Neuromodulation Society
-
Review Meta Analysis
Transcranial Magnetic Stimulation for the Treatment of Concussion: A Systematic Review.
Post-concussive symptoms (PCSs) are common, disabling, and challenging to manage. Evolving models of concussion pathophysiology suggest evidence of brain network dysfunction that may be amenable to neuromodulation. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a potential novel treatment option for PCSs. ⋯ rTMS for the treatment of concussion/mTBI shows promising preliminary results for post-concussive depression and headache, symptoms that otherwise have limited effective treatment options. More studies with larger sample sizes are needed to further establish potential efficacy.
-
Freezing of gait (FoG) is one of the most disabling yet poorly understood symptoms of Parkinson's disease (PD). FoG is an episodic gait pattern characterized by the inability to step that occurs on initiation or turning while walking, particularly with perception of tight surroundings. This phenomenon impairs balance, increases falls, and reduces the quality of life. ⋯ Despite these investigations, the pathogenesis of this process remains poorly understood. The evidence presented in this review suggests FoG to be a heterogenous phenomenon without a single unifying pathologic target. Future studies rigorously assessing targets as well as multimodal approaches will be essential to define the next generation of therapeutic treatments.
-
Dorsal root ganglion stimulation (DRG-S) involves the electrical modulation of the somata of afferent neural fibers to treat chronic pain. DRG-S has demonstrated clinical efficacy at frequencies lower than typically used with spinal cord stimulation (SCS). In a clinical study, we found that the frequency of DRG-S can be tapered to a frequency as low as 4 Hz with no loss of efficacy. This review discusses possible mechanisms of action underlying effective pain relief with very low-frequency DRG-S. ⋯ Sensory neural transmission is a frequency-modulated system, with signal frequency determining which mechanisms are activated in the dorsal horn. In the dorsal horn, low-frequency signaling (<20 Hz) activates inhibitory processes while higher frequencies (>25 Hz) are excitatory. Physiologically, low-threshold mechanoreceptors (LTMRs) fibers transmit or modulate innocuous mechanical touch at frequencies as low as 0.5-5 Hz, while nociceptive fibers transmit pain at high frequencies. We postulate that very low-frequency DRG-S, at least partially, harnesses LTMRs and the native endogenous opioid system. Utilizing lower stimulation frequency decreases the total energy delivery used for DRG-S, extends battery life, and facilitates the development of devices with smaller generators.
-
While the majority of indications and approvals for dorsal root ganglion stimulation (DRGS) are for the refractory management of complex regional pain syndrome (CRPS), emerging evidence has suggested that DRGS may be favorably used for a plethora of other chronic pain phenomena. Consequently, we aimed to characterize the use and efficacy of DRGS for these non-CRPS-related chronic pain syndromes. ⋯ DRGS continues to lack supportive evidence from well designed, high level studies and recommendations from consensus committee experts. However, we present repeated and consistent evidence from lower level studies showing success with the use of DRGS for various non-CRPS chronic pain syndromes in reducing pain along with increasing function and QOL from one week to three years. Due to such low-level, high bias evidence, we strongly encourage the continuation of high-level studies in order to provide a stronger foundation for the use of DRGS in non-CRPS chronic pain patients. However, it may be reasonable and appropriate to evaluate patients for DRGS candidacy on a case-by-case basis particularly if they manifest focal pain syndromes refractory to noninterventional measures and may not be ideal candidates for other forms of neuromodulation.
-
While the majority of indications and approvals for dorsal root ganglion stimulation (DRGS) are for the refractory management of complex regional pain syndrome (CRPS), emerging evidence has suggested that DRGS may be favorably used for a plethora of other chronic pain phenomena. Consequently, we aimed to characterize the use and efficacy of DRGS for these non-CRPS-related chronic pain syndromes. ⋯ DRGS continues to lack supportive evidence from well designed, high level studies and recommendations from consensus committee experts. However, we present repeated and consistent evidence from lower level studies showing success with the use of DRGS for various non-CRPS chronic pain syndromes in reducing pain along with increasing function and QOL from one week to three years. Due to such low-level, high bias evidence, we strongly encourage the continuation of high-level studies in order to provide a stronger foundation for the use of DRGS in non-CRPS chronic pain patients. However, it may be reasonable and appropriate to evaluate patients for DRGS candidacy on a case-by-case basis particularly if they manifest focal pain syndromes refractory to noninterventional measures and may not be ideal candidates for other forms of neuromodulation.