Neuroscience
-
Delayed paralysis occurs within some patients suffered from ischemic spinal cord injury (ISCI) due to the aorta occlusion during the repair surgery of thoracic and thoracoabdominal aortic aneurysms. Although mild hypothermia has been reported to improve ISCI and prolong the tolerance of rats to ISCI without inducing immediate paralysis, the mechanism remains unclear. Herein, the study revealed that the mild hypothermia treatment indeed partially improved the ISCI in rats caused by cross-clamping at the descending aorta. ⋯ In both in vivo ISCI model in rats and in vitro OGD model in BV-2 cells, the PI3K/AKT/mTOR pathway showed to be inhibited, whereas the PI3K/AKT/mTOR pathway was further inhibited by mild hypothermia in ISCI rats or rapamycin treatment in OGD-stimulated BV-2 cells. In conclusion, enhanced autophagy might be the mechanism of inhibited microglia activation by hypothermia treatment in ISCI rats and by rapamycin treatment in OGD-stimulated BV-2 cells. Autophagy could be enhanced through inhibiting the PI3K/AKT/mTOR pathway.
-
Chronic nonspecific low back pain (cNLBP) is a leading contributor to disease burden worldwide that is difficult to treat due to its nonspecific aetiology and complexity. The amygdala is a complex of structurally and functionally heterogeneous nuclei that serve as a key neural substrate for the interactions between pain and negative affective states. However, whether the functions of amygdalar subcomponents are differentially altered in cNLBP remains unknown. ⋯ Both groups exhibited stronger effective connectivity from the left amygdala to the right amygdala. In summary, these findings not only suggested altered rsFC of the amygdala-mPFC pathway in cNLBP but also implicated an abnormal direction of information processing between the amygdala and mPFC in these patients. Our results further highlight the involvement of the amygdala in the neuropathology of cNLBP.
-
Recent studies have suggested that resting-state brain functional connectivity (RSFC) has the potential to discriminate among individuals in a population. These studies mostly utilized a pattern of RSFC obtained from one scan to identify a given individual from the set of patterns obtained from the second scan. However, it remains unclear whether the discriminative ability would change with the extension of the time span between the two brain scans. ⋯ We found that although the accuracies were detectable at above-chance levels, the discriminative accuracies showed a significant decrease (F = 17.87, p < 0.01) along with the extension of brain imaging time span, from over 90% within one month to 66% at 2-3 years. Furthermore, the decreasing trend was robust and not dependent on the training set or analysis method. Therefore, we suggest that the discriminative ability of RSFC in identifying individuals should be susceptible to the length of time between brain scans.
-
Academic self-concept, which can be defined as one's beliefs about their academic ability, plays an important role in students' future academic achievement. Here, we examined the neuroanatomical substrates underlying academic self-concept in 92 school-aged children (9.90 ± 0.85 years, 41 girls) using voxel-based morphometry of images obtained by structural magnetic resonance imaging. ⋯ Region of interest analyses further showed that regional gray matter volume in the right DLPFC could significantly predict achievement 1 year after assessment. Notably, mediation analyses suggested that regional gray matter volume in the right DLPFC mediated the effect of academic self-concept on students' future academic achievement.
-
Parvalbumin-expressing (PV+) interneurons in the sensory cortex form powerful inhibitory synapses on the perisomatic compartments and axon initial segments of excitatory principal neurons (PNs), and perform diverse computational functions. Impaired PV+ interneuron functions have been reported in neural developmental and degenerative disorders. Expression of the unique marker parvalbumin (PV) is often used as a proxy of PV+ interneuron functions. ⋯ The expression of KV3.1 was correlated with spike frequency adaptation, but not with the expression of GAD67. These results suggest separate transcriptional regulations of PV/GAD67 vs. KV3.1, both of which are modulated by NIHL.